Deteksi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit dengan Algoritme K-Means
DOI:
https://doi.org/10.31598/sintechjournal.v5i2.1146Keywords:
image processing, k-means, clustering, palm fruit, kaltim, kaltaraAbstract
Oil extraction rate (OER) of fresh fruit bunches (FFB) of palm oil is depend on the stage of ripeness. The process of detecting the ripeness of oil palm FFB has difficult by manually. Farmers find it difficult to reach the fruit to detect ripeness with the eye, when the palm tree is tall. So farmers need a system that is able to detect the maturity level of oil palm FFB based on color. The K-Means method is capable of clustering based on the closest mean value to the centroid from a number of objects to cluster k. Data obtained from 2 oil palm plantations in East and North Kalimantan. In this study, the clustering of fresh fruit bunches of oil palm has four levels of maturity based on the calculation of the elbow method. The training data used in this study is 80 data. The test image data used in this study is 40 data. There are 36 appropriate data based on the classification method so the accuracy obtained in grouping using the k-means clustering segmentation method is 90%.
Downloads
References
R. Sinambela, T. Mandang, I. D. M. Subrata, and W. Hermawan, “Application of an inductive sensor system for identifying ripeness and forecasting harvest time of oil palm,” Sci. Hortic. (Amsterdam)., vol. 265, no. October 2019, p. 109231, 2020, doi: 10.1016/j.scienta.2020.109231.
E. B. Febrianto, H. Gunawan, and N. V. Sirait, “Karakteristik Morfologi Kelapa Sawit (Elaeis guineensi Jacq.) Varietas DyxP Dumpy dengan Pemberian Asam Humat pada Media Tanah Salin di Main Nursery,” BERNAS Agric. Res. J., vol. 15, no. 2, pp. 103–120, 2019.
H. Ishak, M. Shiddiq, R. H. Fitra, and N. Z. Yasmin, “Ripeness Level Classification of Oil Palm Fresh Fruit Bunch Using Laser Induced Fluorescence Imaging,” J. Aceh Phys. Soc., vol. 8, no. 3, pp. 84–89, 2019, doi: 10.24815/jacps.v8i3.14139.
S. Madhukumar and N. Santhiyakumari, “Evaluation of k-Means and fuzzy C-means segmentation on MR images of brain,” Egypt. J. Radiol. Nucl. Med., vol. 46, no. 2, pp. 475–479, 2015, doi: 10.1016/j.ejrnm.2015.02.008.
P. Mensah Kwabena, B. A. Weyori, and A. Abra Mighty, “Exploring the performance of LBP-capsule networks with K-Means routing on complex images,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2020, doi: 10.1016/j.jksuci.2020.10.006.
A. S. Yaumi, Z. Zulfiqkar, and A. Nugroho, “Klasterisasi Karakter Konsumen Terhadap Kecenderungan Pemilihan Produk Menggunakan K-Means,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 3, p. 195, 2020, doi: 10.31328/jointecs.v5i3.1523.
N. T. Hartanti, “Metode Elbow dan K-Means Guna Mengukur Kesiapan Siswa SMK Dalam Ujian Nasional,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 82–89, 2020, doi: 10.25077/teknosi.v6i2.2020.82-89.
A. Winarta and W. J. Kurniawan, “Optimasi cluster k-means menggunakan metode elbow pada data pengguna narkoba dengan pemrograman python,” J. Tek. Inform. Kaputama, vol. 5, no. 1, pp. 113–119, 2021.
K. Tian, J. Li, J. Zeng, A. Evans, and L. Zhang, “Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm,” Comput. Electron. Agric., vol. 165, no. August, p. 104962, 2019, doi: 10.1016/j.compag.2019.104962.
I. E. Putri, Kusumiyati, and A. A. Munawar, “Penerapan Algoritma Diskriminasi menggunakan Metode Principal Component Analysis ( PCA ) dan Vis-Swnir Spectroscopy,” Sintech J., vol. 4, no. 1, pp. 40–46, 2021.
A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 45–51, 2020, doi: 10.30871/jaic.v4i1.2017.
K. Tan, W. S. Lee, H. Gan, and S. Wang, “Recognising blueberry fruit of different maturity using histogram oriented gradients and colour features in outdoor scenes,” Biosyst. Eng., vol. 176, pp. 59–72, 2018, doi: 10.1016/j.biosystemseng.2018.08.011.
A. Nithya, A. Appathurai, N. Venkatadri, D. R. Ramji, and C. Anna Palagan, “Kidney disease detection and segmentation using artificial neural network and multi-kernel k-means clustering for ultrasound images,” Meas. J. Int. Meas. Confed., vol. 149, p. 106952, 2020, doi: 10.1016/j.measurement.2019.106952.
H. Li, H. He, and Y. Wen, “Dynamic particle swarm optimization and K-means clustering algorithm for image segmentation,” Optik (Stuttg)., vol. 126, no. 24, pp. 4817–4822, 2015, doi: 10.1016/j.ijleo.2015.09.127.
B. Harel, Y. Parmet, and Y. Edan, “Maturity classification of sweet peppers using image datasets acquired in different times,” Comput. Ind., vol. 121, p. 103274, 2020, doi: 10.1016/j.compind.2020.103274.
H. A. Siregar, Y. Yenni, R. D. Setiowati, N. Supena, E. Suprianto, and A. R. Purba, “Cameroon virescens oil palm (Elaeis guineensis) from iopri’s germplasm,” Agrivita, vol. 42, no. 2, pp. 283–294, 2020, doi: 10.17503/agrivita.v0i0.2239.
Z. Chen, Y. Wang, S. Zhang, H. Zhong, and L. Chen, “Differentially private user-based collaborative filtering recommendation based on k-means clustering,” Expert Syst. Appl., vol. 168, no. November 2020, p. 114366, 2021, doi: 10.1016/j.eswa.2020.114366.
L. Arsy, O. D. Nurhayati, and K. T. Martono, “Aplikasi Pengolahan Citra Digital Meat Detection Dengan Metode Segmentasi K-Mean Clustering Berbasis OpenCV Dan Eclipse,” J. Teknol. dan Sist. Komput., vol. 4, no. 2, p. 322, 2016, doi: 10.14710/jtsiskom.4.2.2016.322-332.
A. K. Wardhani, “Implementasi Algoritma K-Means untuk Pengelompokkan Penyakit Pasien pada Puskesmas Kajen Pekalongan,” J. Transform., vol. 14, no. 1, pp. 30–37, 2016.
S. N. Arofah and F. Marisa, “Penerapan Data Mining untuk Mengetahui Minat Siswa pada Pelajaran Matematika menggunakan Metode K-Means Clustering,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 85–90, 2018, doi: 10.31328/jointecs.v3i2.787.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Wahyuni Eka Sari, Muslimin, Annafi Franz, Putu Sugiartawan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright in each article belongs to the author.
- The authors admit that SINTECH Journal as a publisher who published the first time under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
- Authors can include writing separately, regulate distribution of non-ekskulif of manuscripts that have been published in this journal into another version (eg sent to respository institution author, publication into a book, etc.), by recognizing that the manuscripts have been published for the first time in SINTECH Journal