Perbandingan Metode Pembobotan TF-RF Dan TF-ABS Pada Kategorisasi Berita Di BDI Denpasar
DOI:
https://doi.org/10.31598/sintechjournal.v6i1.1252Keywords:
Classification, Term Weighting, TF-RF, TF-ABS, K-Nearest NeighborsAbstract
BDI Denpasar is a government agency tasked with carrying out training and education for human resources of animation, crafts and art. BDI Denpasar in managing news classes in the Kabar Insan Oke service still uses conventional methods. Therefore an automatic news classification module is needed. This study was made to compare the performance level of news classification at BDI Denpasar using K-NN classification with the TF-RF and TF-ABS term weighting methods. Methods that have a high level of performance will be implemented in the news classification module. This research was carried out by collecting news documents, text preprocessing, term weighting, classification, model validation and testing. The K-NN classification uses the n_neighbhor (k), namely k=3, k=5, k=7 and k=9 using a dataset of 324 documents containing 7 classes taken from BDI Denpasar website. Based on the results of the tests performed, TF-RF method obtained a higher performance at k=5 with an accuracy of 71% with a precision of 73% and a recall of 71%. TF-ABS method with the highest performance value is found at k=9 which obtains 70% accuracy, 63% precision and 70% recall. So the method that will be implemented in the news classification module is TF-RF at k=5 with an accuracy of 71% with a precision of 73% and a recall of 71%.
Downloads
References
Anshori, M. A. I. (2020). Perbandingan Metode Naïve Bayes Dengan K-Nearest Neighbor (KNN) Untuk Klasifikasi Kategori Abstrak Skripsi. In tidak diterbitkan. tidak diterbitkan. http://etheses.uin-malang.ac.id/id/eprint/18148
Assidyk, A. N., Setiawan, E. B., & Kurniawan, I. (2020). Analisis Perbandingan Pembobotan TF-IDF dan TF-RF pada Trending Topic di Twitter dengan Menggunakan Klasifikasi K-Nearest Neighbor. E-Proceeding of Engineering, 7(2), 7773–7781.
Deolika, A., Kusrini, & Luthfi, E. T. (2019). Analisis Pembobotan Kata Pada Klasifikasi Text Mining. Jurnal Teknologi Informasi, 3(2), 179. https://doi.org/10.36294/jurti.v3i2.1077
Februariyanti, H. (2012). Klasifikasi Dokumen Berita Teks Bahasa Indonesia menggunakan Ontologi. Teknologi Informasi DINAMIK, 17(1), 14–23. http://www.unisbank.ac.id/ojs/index.php/fti1/article/view/1612/594
Indriani, A. (2020). Analisa Perbandingan Metode Naïve Bayes Classifier Dan K-Nearest Neighbor Terhadap Klasifikasi Data. Sebatik, 24(1), 1–7. https://doi.org/10.46984/sebatik.v24i1.909
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. In Applied Predictive Modeling. https://doi.org/10.1007/978-1-4614-6849-3
Kurniawan, M. A., Sibaroni, Y., & Lhaksmana, K. M. (2018). Kategorisasi Berita Menggunakan Metode Pembobotan TF.ABS dan TF.CHI. Indonesian Journal on Computing (Indo-JC), 3(2), 83. https://doi.org/10.21108/indojc.2018.3.2.236
Lan, M., Tan, C. L., & Low, H. B. (2006). Proposing a new term weighting scheme for text categorization. Proceedings of the National Conference on Artificial Intelligence, 1, 763–768.
Ni’mah, A. T., & Arifin, A. Z. (2020). Perbandingan Metode Term Weighting terhadap Hasil Klasifikasi Teks pada Dataset Terjemahan Kitab Hadis. Rekayasa, 13(2), 172–180. https://doi.org/10.21107/rekayasa.v13i2.6412
Supono, R. A., & Muhammad Azis, S. (2021). Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor. JURNAL RESTI, 5(10), 911–918.
Suprayogi, M. A., & Supono, R. A. (2021). Klasifikasi Helpdesk Menggunakan Metode K-Nearest Neighbor dan TF-ABS. Techno.Com, 20(4), 508–517. https://doi.org/10.33633/tc.v20i4.5094
Tempola, F., Muhammad, M., & Khairan, A. (2018). Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(5), 577. https://doi.org/10.25126/jtiik.201855983
Wu, H., & Gu, X. (2014). Reducing over-weighting in supervised term weighting for sentiment analysis. COLING 2014 - 25th International Conference on Computational Linguistics, Proceedings of COLING 2014: Technical Papers, 1322–1330.
Wu, X., & Kumar, V. (2013). The Top Ten Algorithms in Data Mining, Chapman & Hall/CRC Data Mining and Knowledge Discovery. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9).
Downloads
Published
Issue
Section
License
Copyright (c) 2023 I Kadek Wahyu Dananjaya, I Gusti Ayu Agung Diatri Indradewi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright in each article belongs to the author.
- The authors admit that SINTECH Journal as a publisher who published the first time under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
- Authors can include writing separately, regulate distribution of non-ekskulif of manuscripts that have been published in this journal into another version (eg sent to respository institution author, publication into a book, etc.), by recognizing that the manuscripts have been published for the first time in SINTECH Journal