Klasifikasi Penyakit Antraknosa Pada Cabai Merah Teropong ”Inko Hot” Dengan Metode Convolutional Neural Network
DOI:
https://doi.org/10.31598/sintechjournal.v6i2.1377Keywords:
Antraknosa, Cabai Merah, Sistem Klasifikasi, Convolutional Neural NetworkAbstract
The red chili variety "inko hot" is a type of red chili that has a high economic value. Unfortunately, these red chili plants are often infected with anthracnose disease, which results in significant losses for farmers. Anthracnose is one of the major diseases infecting chili plants, potentially resulting in crop failure and losses of up to 80%. The purpose of this study is to develop a classification system to identify anthracnose disease in red chili fruit, using Convolutional Neural Network (CNN) method. In this experiment, 1500 data were used, of which 80% were used as training data and 20% as validation data. The best results of this experiment produced a model with an accuracy of 97% and a loss rate of 6.45%, by applying the Nadam optimization algorithm and going through 50 iterations (epochs). The model showed good performance with a prediction accuracy rate of 83.33%. The development of this classification system has significant potential in providing efficient solutions to recognize diseases in chili plants. Through continuous development, this system can be a valuable tool for farmers to increase crop productivity and reduce the negative impact of disease attacks on red chili peppers and other crops.
Downloads
References
B. Muslimin and P. Sugiartawan, “SINTECH Journal | 195 IMPLEMENTASI METODE CERTAINTY FACTOR DALAM SISTEM PAKAR UNTUK MENGIDENTIFIKASI PENYAKIT TANAMAN LADA”, [Online]. Available: https://doi.org/10.31598
S. Sisca Piay, A. Tyasdjaja, Y. Ermawati, and F. Rudi Prasetyo Hantoro, Cabai Merah (Capsicum annuum .) L. 2010.
O. Mongkolporn, Capsicum. CRC Press, 2019.
M. Kholil, H. Priya Waspada, R. Akhsani, and A. Komunitas Negeri Putra Sang Fajar Blitar, “SINTECH Journal | 198 Klasifikasi Penyakit Infeksi Pada Ayam Berdasarkan Gambar Feses Menggunakan Convolutional Neural Network”, [Online]. Available: https://doi.org/10.31598
J. J. Siregar et al., “SINTECH Journal | 114 Densely Connected Dan Residual Convolutional Neural Network untuk Estimasi Jumlah Keluarga Tingkat Desa Dengan Citra Satelit”, [Online]. Available: https://doi.org/10.31598
J. Vicky, F. Ayu, and B. Julianto, “Implementasi Pendeteksi Penyakit pada Daun Alpukat Menggunakan Metode CNN.”
M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in Deep Learning, 1st ed., vol. 57. Springer Singapore, 2020. [Online]. Available: http://www.springer.com/series/11970
A. Rosebrock, Deep Learning for Computer Vision with Python, 1st ed. pyimagesearch , 2017.
B. Moons, D. Bankman, and M. Verhelst, Embedded Deep Learning, 1st ed. Switzerland: Springer International Publishing, 2019. doi: 10.1007/978-3-319-99223-5.
F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” Journal of Informatics and Computer Science, vol. 1, pp. 104–108, 2019.
A. Tsany Rakha Dzaky, “Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network,” Proceeding of Engineering, vol. 8, pp. 3039–3055, Apr. 2021.
D. S. Anggraeni, A. Widayana, P. D. Rahayu, and C. Rozikin, “Metode Algoritma Convolutional Neural Network Pada Klasifikasi Penyakit Tanaman Cabai,” Satuan Tulisan Riset dan Inovasi Teknologi, vol. 7, pp. 73–78, Aug. 2022.
S. A. Sabrina and W. F. Al Maki, “Klasifikasi Penyakit pada Tanaman Kopi Robusta Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” Proceding of Engineering, vol. 9, pp. 1919–1927, Jul. 2022.
E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN),” Jurnal Informatika dan Komputer, vol. 22, pp. 117–123, Sep. 2020, doi: 10.31294/p.v21i2.
I. Edo Hendrawan, M. Ilhamsyah, D. Yusup, U. Singaperbangsa Karawang, J. HSRonggo Waluyo, and P. KecTelukjambe Timur KabKarawang, “Klasifikasi Penyakit Powdery mildew Pada Ceri Manis Dengan Menggunakan Algoritma Convolutional Neural Network (CNN),” Jurnal informasi dan Komputer, vol. 10, no. 1, 2022.
E. Oktafanda, “Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Informatika Ekonomi Bisnis, pp. 72–77, Aug. 2022, doi: 10.37034/infeb.v4i3.143.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Donny Avianto, Ilmy Eka Handayani
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright in each article belongs to the author.
- The authors admit that SINTECH Journal as a publisher who published the first time under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
- Authors can include writing separately, regulate distribution of non-ekskulif of manuscripts that have been published in this journal into another version (eg sent to respository institution author, publication into a book, etc.), by recognizing that the manuscripts have been published for the first time in SINTECH Journal