Perbandingan Kinerja Algoritma K-Means dan K-Medoids Dalam Klasterisasi Jumlah Tindak Pidana Kejahatan Berbasis Wilayah Kepolisian Daerah
DOI:
https://doi.org/10.31598/sintechjournal.v6i3.1457Keywords:
Data Mining, K-Means, K-Medoids, Klastering, Jurnal PusiknasAbstract
Criminal acts are often a problem that occurs in Indonesia. Where currently the number of reports handled by the police regarding criminal acts is always there every day. Indonesia's population is increasing and the background of perpetrators who are unemployed is often one of the reasons why the police find it difficult to resolve criminal acts that occur due to limited human resources. To overcome this problem, information is needed that provides areas in Indonesia where criminal acts frequently occur so that the police can make decisions to allocate human resources to protect those jurisdictions from criminal acts that occur. Using data on criminal offenses and the employment of criminal offenders, namely not working from 2021, data was taken from the National Police Criminal Investigation Unit's Pusiknas Annual Journal. The data will be clustered using data mining techniques using the K-Means and K-Medoids algorithms. These 2 algorithms produced 2 clusters with the smallest Davies Bouldin index value found in the K-Means algorithm with a value of 0.272. With the research results which produced 2 clusters, it can be concluded that there are categories of high crime and low crime.
Downloads
References
D. Dwirohayati, N. Herawadi Sudibyo, and A. Kejahatan, “Sistem Informasi Pemetaan Wilayah Rawan Kriminalitas Polresta Bandar Lampung Menggunakan K-Means Clustering,” IJCCS, vol. x, No.x, no. 0721, p. 1.
“Berapa Jumlah Polisi di Indonesia?” Accessed: Jul. 17, 2023. [Online]. Available: https://dataindonesia.id/varia/detail/berapa-jumlah-polisi-di-indonesia
F. Nurdiyansyah, I. Akbar, A. History, and C. Author, “Jurnal Teknologi dan Manajemen Informatika Implementasi Algoritma K-Means untuk Menentukan Persediaan Barang pada Poultry Shop Article Info ABSTRACT,” vol. 7, no. 2, pp. 86–94, 2021, [Online]. Available: http://http://jurnal.unmer.ac.id/index.php/jtmi
R. Ordila, R. Wahyuni, Y. Irawan, and M. Yulia Sari, “PENERAPAN DATA MINING UNTUK PENGELOMPOKAN DATA REKAM MEDIS PASIEN BERDASARKAN JENIS PENYAKIT DENGAN ALGORITMA CLUSTERING (Studi Kasus : Poli Klinik PT.Inecda),” Jurnal Ilmu Komputer, vol. 9, no. 2, pp. 148–153, Oct. 2020, doi: 10.33060/jik/2020/vol9.iss2.181.
W. Saputro, M. Reza Pahlevi, A. Wibowo, M. Ilmu Komputer, and F. Ilmu Komputer, “ANALISIS ALGORITMA K-MEANS UNTUK KLASTERISASI TINDAK PIDANA KORUPSI DI WILAYAH HUKUM INDONESIA”, doi: 10.33387/jiko.
J. Jaya Purnama et al., “Analisa Algoritma K-Means Clustering Pemetaan Jumlah Tindak Pidana,” 2019.
U. T. Suryadi and Y. Supriatna, “SISTEM CLUSTERING TINDAK KEJAHATAN PENCURIAN DI WILAYAH JAWA BARAT MENGGUNAKAN ALGORITMA K-MEANS,” vol. 22, p. 111, 2019.
N. Dwitri et al., “PENERAPAN ALGORITMA K-MEANS DALAM MENENTUKAN TINGKAT PENYEBARAN PANDEMI COVID-19 DI INDONESIA,” Jurnal Teknologi Informasi, vol. 4, no. 1, 2020.
S. Sindi et al., “ANALISIS ALGORITMA K-MEDOIDS CLUSTERING DALAM PENGELOMPOKAN PENYEBARAN COVID-19 DI INDONESIA,” Jurnal Teknologi Informasi, vol. 4, no. 1, 2020.
“Jurnal Tahunan Pusiknas Bareskrim Polri Tahun 2021”.
I. Budiman, T. Prahasto, and Y. Christyono, “DATA CLUSTERING MENGGUNAKAN METODOLOGI CRISP-DM UNTUK PENGENALAN POLA PROPORSI PELAKSANAAN TRIDHARMA,” 2012.
M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” 2021. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
J. Rochel and F. Evéquoz, “Getting into the engine room: a blueprint to investigate the shadowy steps of AI ethics,” AI Soc, vol. 36, no. 2, pp. 609–622, Jun. 2021, doi: 10.1007/s00146-020-01069-w.
D. Kurniawan and D. M. Yasir, “OPTIMIZATION SENTIMENT ANALYSIS USING CRISP-DM AND NAÏVE BAYES METHODS IMPLEMENTED ON SOCIAL MEDIA”.
M. Firdaus, “PENENTUAN KLASIFIKASI DENGAN CRISP-DM DALAM MEMPREDIKSI KELULUSAN MAHASISWA PADA SUATU MATA KULIAH,” 2022.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “DATA MINING CLUSTERING FOOD EXPENDITURE IN INDONESIA,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 6, pp. 1491–1500, Dec. 2022, doi: 10.20884/1.jutif.2022.3.6.331.
Y. Sopyan, A. D. Lesmana, and C. Juliane, “Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, Dec. 2022, doi: 10.47065/bits.v4i3.2697.
S. N. Luqman et al., “Komparasi Algoritma Klasifikasi Genre Musik pada Spotify Menggunakan CRISP-DM,” 2021.
B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “ANALISIS DATA MINING DATA NETFLIX MENGGUNAKAN APLIKASI RAPID MINER,” JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 1, Apr. 2021, doi: 10.30813/jbase.v4i1.2729.
I. W. Septiani, Abd. C. Fauzan, and M. M. Huda, “Implementasi Algoritma K-Medoids Dengan Evaluasi Davies-Bouldin-Index Untuk Klasterisasi Harapan Hidup Pasca Operasi Pada Pasien Penderita Kanker Paru-Paru,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 3, no. 4, p. 556, Jul. 2022, doi: 10.30865/json.v3i4.4055.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Gelar Nurcahya, Arief Wibowo, Dwi Kristanto
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright in each article belongs to the author.
- The authors admit that SINTECH Journal as a publisher who published the first time under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
- Authors can include writing separately, regulate distribution of non-ekskulif of manuscripts that have been published in this journal into another version (eg sent to respository institution author, publication into a book, etc.), by recognizing that the manuscripts have been published for the first time in SINTECH Journal