Estimasi Waktu Pengembangan Dengan Simple Function Point Menggunakan Metode Berbasis Ensemble
DOI:
https://doi.org/10.31598/sintechjournal.v7i3.1681Keywords:
Data Mining, Ensemble, Machine Learning, Scrum, Software EstimationAbstract
Pengembangan proyek perangkat lunak sangat bergantung pada perencanaan estimasi waktu dan biaya agar membantu pengembang mengurangi terlambatnya delivery software, meningkatkan kepuasan pelanggan, memungkinkan organisasi untuk mengalokasikan sumber daya secara efisien, mengurangi biaya dan mengoptimalkan proses pengembangan. Untuk mengatasi permasalahan tersebut diperlukan prediksi waktu pengembangan perangkat lunak yang cepat dan efisien serta memberikan hasil prediksi terbaik. Penelitian ini membandingkan metode machine learning Ada Boost Regressor, Support Vector Regression, Random Forest Regression dan Ensemble Method dengan data yang diambil dari proyek scrum pada salah satu instansi. Hasil penggunaan machine learning berbasis metode ensemble dengan penambahan fitur simple function point (SiFP) memberikan hasil terbaik dengan nilai RMSE dataset dengan SiFP 0.0714 dan tanpa SiFP 0.0819, nilai MSE dataset dengan SiFP 0.0051 dan tanpa SiFP 0.0067, nilai MAE dataset dengan SiFP 0.0589 dan tanpa SiFP 0.0674 sedangkan nilai R2 dataset dengan SiFP 0.7698 dan tanpa SiFP 0.6964. Dari hasil tersebut disimpulkan model machine learning ensemble methods dengan penambahan fitur SiFP meningkatkan estimasi waktu pengembangan pada proyek scrum.
Downloads
References
T. Halkjelsvik and M. Jørgensen, “From Origami to software development: A review of studies on judgment-based predictions of performance time,” Psychol Bull, vol. 138, no. 2, pp. 238–271, Mar. 2012, doi: 10.1037/a0025996.
Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, and M. Ali, “Software effort estimation accuracy prediction of machine learning techniques: A systematic performance evaluation,” Softw Pract Exp, vol. 52, no. 1, pp. 39–65, Jan. 2022, doi: 10.1002/spe.3009.
M. Fernández-Diego, E. R. Méndez, F. González-Ladrón-De-Guevara, S. Abrahão, and E. Insfran, “An update on effort estimation in agile software development: A systematic literature review,” 2020, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2020.3021664.
K. Zhang, X. Wang, J. Ren, and C. Liu, “Efficiency Improvement of Function Point-Based Software Size Estimation with Deep Learning Model,” IEEE Access, vol. 9, pp. 107124–107136, 2021, doi: 10.1109/ACCESS.2020.2998581.
L. Lavazza and R. Meli, “An evaluation of simple function point as a replacement of IFPUG function point,” in Proceedings - 2014 Joint Conference of the International Workshop on Software Measurement, IWSM 2014 and the International Conference on Software Process and Product Measurement, Mensura 2014, Institute of Electrical and Electronics Engineers Inc., Dec. 2014, pp. 196–206. doi: 10.1109/IWSM.Mensura.2014.28.
P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective approach for software project effort and duration estimation with machine learning algorithms,” Journal of Systems and Software, vol. 137, pp. 184–196, Mar. 2018, doi: 10.1016/j.jss.2017.11.066.
Z. Sakhrawi, A. Sellami, and N. Bouassida, “Software Enhancement Effort Estimation using Machine Learning Regression Methods,” International Journal of Computer Information Systems and Industrial Management Applications, vol. 12, pp. 412–423, 2020.
J. T. H. Jose Thiago and A. L. I. Oliveira, “Ensemble Effort Estimation using dynamic selection,” Journal of Systems and Software, vol. 175, May 2021, doi: 10.1016/j.jss.2021.110904.
O. H. Alhazmi and M. Z. Khan, “Software Effort Prediction Using Ensemble Learning Methods,” Journal of Software Engineering and Applications, vol. 13, no. 07, pp. 143–160, 2020, doi: 10.4236/jsea.2020.137010.
E. Haerani, F. Syafria, F. Lestari, and I. Marzuki, “CLASSIFICATION ACADEMIC DATA USING MACHINE LEARNING FOR DECISION MAKING PROCESS,” Journal of Applied Engineering and Technological Science, vol. 4, no. 2, pp. 955–968, May 2023.
I. Sembiring, S. N. Wahyuni, and E. Sediyono, “LSTM algorithm optimization for COVID-19 prediction model,” Heliyon, vol. 10, no. 4, Feb. 2024, doi: 10.1016/j.heliyon.2024.e26158.
S. Clara et al., “Implementasi Seleksi Fitur Pada Algoritma Klasifikasi Machine Learning Untuk Prediksi Penghasilan Pada Adult Income Dataset,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, pp. 743–744, Apr. 2021.
V. R. Prasetyo, M. Mercifia, A. Averina, L. Sunyoto, and Budiarjo, “PREDIKSI RATING FILM PADA WEBSITE IMDB MENGGUNAKAN METODE NEURAL NETWORK,” Jurnal Ilmiah NERO, vol. 7, no. 1, Apr. 2022.
B. G. Marcot and A. M. Hanea, “What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?,” Comput Stat, vol. 36, no. 3, pp. 2009–2031, Sep. 2021, doi: 10.1007/s00180-020-00999-9.
A. Vabalasid, E. Gowen, E. Poliakoff, and A. J. Casson, “Machine learning algorithm validation with a limited sample size,” 2019, doi: 10.1371/journal.pone.0224365.
B. Alsaadi and K. Saeedi, “Ensemble effort estimation for novice agile teams,” Inf Softw Technol, vol. 170, p. 107447, 2024, doi: https://doi.org/10.1016/j.infsof.2024.107447.
L. Lavazza, A. Locoro, and R. Meli, “Software Development Effort Estimation Using Function Points and Simpler Functional Measures: a Comparison under Creative Commons License Attribution 4.0 International (CC BY 4.0),” vol. 23, 2023, [Online]. Available: http://ceur-ws.org
E. N. R. Khakim, A. Hermawan, and D. Avianto, “IMPLEMENTASI CORRELATION MATRIX PADA KLASIFIKASI DATASET WINE,” JIKO (Jurnal Informatika dan Komputer), vol. 7, no. 1, p. 158, Feb. 2023, doi: 10.26798/jiko.v7i1.771.
R. Rodríguez-Pérez and J. Bajorath, “Feature importance correlation from machine learning indicates functional relationships between proteins and similar compound binding characteristics,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-93771-y.
T. Aulia, E. Putri, T. Widiharih, and R. Santoso, “PENERAPAN TUNING HYPERPARAMETER RANDOMSEARCHCV PADA ADAPTIVE BOOSTING UNTUK PREDIKSI KELANGSUNGAN HIDUP PASIEN GAGAL JANTUNG,” Jurnal Gaussian, vol. 11, no. 3, pp. 397–406, Jan. 2023, doi: 10.14710/J.GAUSS.11.3.397-406.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Eri Hutama, Ferry Noorman Setiawan, Luhur Bayuaji
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright in each article belongs to the author.
- The authors admit that SINTECH Journal as a publisher who published the first time under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
- Authors can include writing separately, regulate distribution of non-ekskulif of manuscripts that have been published in this journal into another version (eg sent to respository institution author, publication into a book, etc.), by recognizing that the manuscripts have been published for the first time in SINTECH Journal