Peringkasan Multi Dokumen Berbahasa Indonesia Menggunakan Whale Optimization Algorithm
Keywords:
swarm intelligence, whale optimization algorithm, multi documents summarizationAbstract
Document summarization is a natural language processing method that extracts information from one or more input text documents into an informative and accurate output. Swarm intelligence is one approach that can be used in making summaries that have superior performance. In this study, a multi-document summarization model for Indonesian language was created using one of the swarm intelligence methods, namely Whale Optimization Algorithm (WOA). In making the WOA model for this multi-document summary, 500 Indonesian news documents were used from various online news media. This dataset is divided into two categories, namely 80% for training data and 20% for testing data. In the training stage, WOA is used to optimize the weight of sentence features that are used as a reference in the process of selecting summary sentences. From the results of model testing and validation using k-fold cross validation, it was found that WOA get the best performance value compared to several other methods, namely Rouge-1 = 0.3946, Rouge-2 = 0.1859, Rouge-3 = 0.1309, and Rouge-L = 0.2226. The superiority of the k-fold cross validation results shows the consistency of the model's performance reliability in various document combinations.
References
Y. J. Kumar, O. S. Goh, H. Basiron, N. H. Choon, dan P. C. Suppiah, “A review on automatic text summarization approaches,” J. Comput. Sci., vol. 12, no. 4, hal. 178–190, 2016, doi: 10.3844/jcssp.2016.178.190.
N. Zerari, S. Aitouche, M. D. Mouss, dan A. Yaha, “Automatic Text Summarization: A review,” Ninth Int. Conf. Information, Process. Knowl. Manag. (Eknow 2017), no. c, hal. 20–25, 2017.
M. Allahyari dkk., “Text Summarization Techniques: A Brief Survey,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 10, 2017, doi: 10.14569/ijacsa.2017.081052.
A. Kogilavani dan P. Balasubramani, “Clustering and Feature Specific Sentence Extraction Based Summarization of Multiple Documents,” Int. J. Comput. Sci. Inf. Technol., vol. 2, no. 4, hal. 99–111, 2010, doi: 10.5121/ijcsit.2010.2409.
V. Gupta dan G. S. Lehal, “A Survey of Text Summarization Extractive techniques,” J. Emerg. Technol. Web Intell., vol. 2, no. 3, hal. 258–268, 2010, doi: 10.4304/jetwi.2.3.258-268.
Q. Zhou, F. Wei, dan M. Zhou, “At Which Level Should We Extract? An Empirical Analysis on Extractive Document Summarization,” COLING 2020 - 28th Int. Conf. Comput. Linguist. Proc. Conf., hal. 5617–5628, 2020, doi: 10.18653/v1/2020.coling-main.492.
W. S. El-Kassas, C. R. Salama, A. A. Rafea, dan H. K. Mohamed, “Automatic text summarization: A comprehensive survey,” Expert Syst. Appl., vol. 165, hal. 113679, 2021, doi: 10.1016/j.eswa.2020.113679.
C. L. B. Silveira, A. Tabares, L. T. Faria, dan J. F. Franco, “Mathematical optimization versus Metaheuristic techniques: A performance comparison for reconfiguration of distribution systems,” Electr. Power Syst. Res., vol. 196, no. April, 2021, doi: 10.1016/j.epsr.2021.107272.
X.-S. Yang, “Metaheuristic optimization,” Proc. 11th Int. Symp. Oper. Res. Slov. SOR 2011, no. December, hal. 17–22, 2011, doi: 10.4249/scholarpedia.11472.
A. Sharma, A. Sharma, S. Choudhary, R. K. Pachauri, A. Shrivastava, dan D. Kumar, “a Review on Artificial Bee Colony and Its Engineering Applications,” J. Crit. Rev., vol. 7, no. 11, hal. 4097–4107, 2020, doi: http://www.jcreview.com/fulltext/197-1596854993.pdf?1597550239.
P. Verma dan H. Om, “A novel approach for text summarization using optimal combination of sentence scoring methods,” Sadhana - Acad. Proc. Eng. Sci., vol. 44, no. 5, hal. 1–15, 2019, doi: 10.1007/s12046-019-1082-4.
O. Cordon, F. Herrera, dan T. Stutzle, “A Review on the Ant Colony Optimization Metaheuristic: Basis, Models and New Trends,” Mathw. Soft Comput., vol. 9, no. 3, hal. 141–175, 2002, [Daring]. Tersedia pada: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.80.
E. Bonabeau, M. Dorigo, dan G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, vol. 76, no. 2. 2001.
S. Mirjalili dan A. Lewis, “The Whale Optimization Algorithm,” Adv. Eng. Softw., vol. 95, no. March, hal. 51–67, 2016, doi: 10.1016/j.advengsoft.2016.01.008.
H. M. Mohammed, S. U. Umar, dan T. A. Rashid, “A Systematic and Meta-Analysis Survey of Whale Optimization Algorithm,” Comput. Intell. Neurosci., vol. 2019, 2019, doi: 10.1155/2019/8718571.
R. Rautray dan R. C. Balabantaray, “Cat swarm optimization based evolutionary framework for multi document summarization,” Phys. A Stat. Mech. its Appl., vol. 477, hal. 174–186, 2017, doi: 10.1016/j.physa.2017.02.056.
S. H. Mirshojaei dan B. Masoomi, “Text Summarization Using Cuckoo Search Optimization Algorithm,” J. Comput. Robot., vol. 8, no. 2, hal. 19–24, 2015.
R. Rautray dan R. C. Balabantaray, “An evolutionary framework for multi document summarization using Cuckoo search approach: MDSCSA,” Appl. Comput. Informatics, vol. 14, no. 2, hal. 134–144, 2018, doi: 10.1016/j.aci.2017.05.003.
A. B. Al-Saleh dan M. El Bachir Menai, “Ant colony system for multi-document summarization,” COLING 2018 - 27th Int. Conf. Comput. Linguist. Proc., hal. 734–744, 2018.
J. M. Sanchez-Gomez, M. A. Vega-Rodríguez, dan C. J. Pérez, “Extractive multi-document text summarization using a multi-objective artificial bee colony optimization approach,” Knowledge-Based Syst., vol. 159, no. June 2020, hal. 1–8, 2018, doi: 10.1016/j.knosys.2017.11.029.
J. M. Sanchez-Gomez, M. A. Vega-Rodríguez, dan C. J. Pérez, “Parallelizing a multi-objective optimization approach for extractive multi-document text summarization,” J. Parallel Distrib. Comput., vol. 134, no. September, hal. 166–179, 2019, doi: 10.1016/j.jpdc.2019.09.001.
R. Z. Al-Abdallah dan A. T. Al-Taani, “Arabic Single-Document Text Summarization Using Particle Swarm Optimization Algorithm,” Procedia Comput. Sci., vol. 117, hal. 30–37, 2017, doi: 10.1016/j.procs.2017.10.091.
A. Villa-Monte, L. Lanzarini, A. F. Bariviera, dan J. A. Olivas, “User-oriented summaries using a PSO based scoring optimization method,” Entropy, vol. 21, no. 6, hal. 1–15, 2019, doi: 10.3390/e21060617.
L. Suanmali, N. Salim, dan M. S. Binwahlan, “Automatic Text Summarization Using Feature-Based Fuzzy Extraction,” J. Teknol. Mklm., vol. 20, no. 2, hal. 105–115, 2008.
S. Afantenos, V. Karkaletsis, dan P. Stamatopoulos, “Summarization from medical documents: A survey,” Artif. Intell. Med., vol. 33, no. 2, hal. 157–177, 2005, doi: 10.1016/j.artmed.2004.07.017.
S. A. Babar dan P. D. Patil, “Improving performance of text summarization,” Procedia Comput. Sci., vol. 46, no. Icict 2014, hal. 354–363, 2015, doi: 10.1016/j.procs.2015.02.031.
R. P. Reddy, K. Nara, dan S. S. Reddy, “A Comparative Study of Text Summarization Based on Synchronous and Asynchronous PSO,” Int. J. Adv. Eng. Res. Sci., vol. 3, no. 11, hal. 125–130, 2016, doi: 10.22161/ijaers/3.11.22.
N. Rahman dan B. Borah, “Improvement of query-based text summarization using word sense disambiguation,” Complex Intell. Syst., vol. 6, no. 1, hal. 75–85, 2020, doi: 10.1007/s40747-019-0115-2.
S. Robertson, “Understanding inverse document frequency: On theoretical arguments for IDF,” J. Doc., vol. 60, no. 5, hal. 503–520, 2004, doi: 10.1108/00220410410560582.
X. Liang, S. Xu, Y. Liu, dan L. Sun, “A Modified Whale Optimization Algorithm and Its Application in Seismic Inversion Problem,” Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/9159130.
P. Du, W. Cheng, N. Liu, H. Zhang, dan J. Lu, “A modified whale optimization algorithm with single-dimensional swimming for global optimization problems,” Symmetry (Basel)., vol. 12, no. 11, hal. 1–23, 2020, doi: 10.3390/sym12111892.
Chin-Yew Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” in Proceedings of the ACL 2004 Workshop on Text Summarization Branches Out, Association for Computational Linguistics, 2004, hal. 74–81, doi: 10.1253/jcj.34.1213.
G. Wang dkk., “A fully-automatic semi-supervised deep learning model for difficult airway assessment,” Heliyon, vol. 9, no. 5, 2023, doi: 10.1016/j.heliyon.2023.e15629.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 I Made Widiartha, Rukmi Sari Hartati, Dewa Made Wiharta, Nyoman Putra Sastra

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.