IMPLEMENTASI KLASIFIKASI NAIVE BAYES DALAM MEMPREDIKSI LAMA STUDI MAHASISWA (STUDI KASUS : UNIVERSITAS DHYANA PURA)
DOI:
https://doi.org/10.31598/sintechjournal.v4i2.964Keywords:
data mining, Naive Bayes Rapid Miner, training data, testing dataAbstract
Under normal conditions, undergraduate or undergraduate students from a university can complete their studies for 4 years or 8 semesters. In fact, many students complete their study period of more than 4 years. Is known that in fact in the 2015/2016 academic year there were 744 people who were accepted as students. Of the 744 people who were accepted, 405 people had completed a study period of about 4 years and the remaining 39 people completed their studies for 5 years and 300 of them did not continue their studies. Based on the problem on, so This study implements a classification that can help Dhyana Pura University in predicting the length of study for students who are currently studying in various study programs at Dhyana Pura University. The author's method serves in the classification to predict long student study period is the Naive Bayes algorithm. By using the Java-based Rapid Miner tool to classify graduation data. Then the implementation of data mining which is divided into 968 training data and 193 data testing data with naive Bayes has succeeded in obtaining an accuracy rate of 100% which also has very good parameters.
Downloads
References
Anggraini. M. “Implementasi Algoritma Naive Bayes Dalam Penentuan Rating Buku”, Jurnal sistemasi., vol. 9 no 3, pp. 557-566. 2020.
Tambunan. R. H. “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Berdasarkan Kinerja Akademis Mahasiswa Menggunakan Algoritma Naive Bayes dengan Implementasi Data Mining Studi Kasus : Departemen Teknik Industri USU”, Repositori institusi Universitas Sumatera Utara., 1-115. Internet:
http://repositori.usu.ac.id/handle/123456789/27825 21 September, 2020 [Nov. 4, 2020] .
Silvi. M. “Penerapan Metode Naive Bayes Classifer Untuk Memprediksi Lama Masa Studi Mahasiswa”, UIN Suska Riau Repositori., 1-100.Internet: http://repository.uinsuska.ac.id/27494 22 Juni, 2020[Okto. 25, 2020].
Moonallika. P. S. “Penerapan Data Mining Untuk Memprediksi Kelulusan Mahasiswa Menggunakan Algoritma Naive Bayes”, Jurnal Ilmiah Komputer., 16, 47-56.2020.
Ratniasih. N. L. “Optimasi Data Mining Menggunakan Algoritma Naive Bayes Dan C4.5 Untuk Klasifikasi Kelulusan Mahasiswa”, Jurnal Teknologi Informasi dan Komputer., 28-34.2019.
Heryana. D. “Data mining untuk memprediksi kelulusan mahasiswa pendidikan matematika uin Raden Intan Lampung Menggunakan Naive Bayes”, repository UIN Raden Intan Lampung, 1-104. Internet:http://repository.radenintan.ac.id/6430/ 30 April, 2019 [Nov. 18, 2020] .
Fahrudy. D. “Penerapan Feature Selection Information Gain Pada Algoritma Naive Bayes Untuk Prediksi KelulusanMahasiswa(StudiKasus:Teknik Informatika UIN SUSKA RIAU)”, UIN Suska Riau Repositori, 1-110. Internet: http://repository.uin-suska.ac.id/id/eprint/30623 29 September, 2020 [Des. 18, 2020].
Siyoto. S. Dasar Metodologi Penelitian., yogyakarta: literasi media publishing, 2015.
Subawa. I. G. “Prediksi Kelulusan Mahasiswa Menggunakan Teorema Bayes (Studi Kasus di Universitas Pendidikan Ganesha)”, JANAPATI., vol. 8 no 3, pp. 227-236.2020.
Widaningsih. S. “Perbandingan Metode Data mining Untuk Prediksi Nilai Dan Waktu kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C45, Naive Bayes, KNN, Dan SVN”, Tekno Insentif., vol. 13 no 1, pp 16-25.2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Kelvin Hennry Loudry Malelak, I Made Dwi Ardiada, Gerson Feoh
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright in each article belongs to the author.
- The authors admit that SINTECH Journal as a publisher who published the first time under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
- Authors can include writing separately, regulate distribution of non-ekskulif of manuscripts that have been published in this journal into another version (eg sent to respository institution author, publication into a book, etc.), by recognizing that the manuscripts have been published for the first time in SINTECH Journal