JURNAL RESISTOR | ISSN 2598-7542 | E-ISSN 2598-9650

‘R ES | STO Rk Vol. 8 No 3 — Desember 2025 | https://s.id/jurnalresistor
DOI: https://doi.org/10.31598

REKAYASA SISTEM KOMPUTER

Publishing: Institut Bisnis dan Teknologi Indonesia

Optimasi Pengiriman dan Rekonstruksi Data Visual pada Sistem Irigasi
Otomatis Berbasis loT menggunakan MQTT dan FFmpeg

I Kadek Agus Wahyu Raharja', Gde Wikan Pradnya Dana?, | Gede Wira Darma3, | Gusti Agung Made
Yoga Mahaputra*

L23program Studi Teknik Komputer, Fakultas Teknik dan Perencanaan, Universitas Warmadewa
JI. Terompong No.24, Denpasar , Bali, Indonesia
4Program Studi Teknik Otomasi Jurusan Teknik Elektro Politeknik Negeri Bali
Kampus Bukit, Jimbaran, Bali, Indonesia

e-mail: raharja.wahyu.agus.kadek@warmadewa.ac.id?, wikanpdana8044@warmadewa.ac.id?,
igedewiradarma@warmadewa.ac.id3, yogamahaputra@pnb.ac.id*

Received : Agustus, 2025 | Accepted : Desember, 2025 | Published : Desember, 2025

Abstract

The integration of the Internet of Things (loT) in smart irrigation enables real-time visual monitoring for
more accurate decision-making. However, transmitting images over constrained networks presents
challenges related to latency and bandwidth efficiency. This paper focuses on optimizing visual data
transmission using MQTT for lightweight communication and FFmpeg for multimedia processing. The
study does not emphasize multi-device testing, but instead concentrates on the efficiency and reliability of
single-image transmission through protocol optimization. A prototype using the ESP32-S3-EYE camera
captures images following irrigation triggers and publishes them to a Mosquitto broker; on the receiver
side (Python), the images are stored and reconstructed into video using FFmpeg. With small JPEG payloads
(5-11 KB) and MQTT QoS 1, the results demonstrate near real-time performance with an average one-
way latency of approximately 30 ms and an effective bandwidth of 0.102—-0.145 Mbps per image, while
maintaining sufficient visual quality for monitoring. QoS 1 optimization was shown to improve
transmission success to 100% compared to QoS 0, which achieved only around 50%. The combination of
MQTT and FFmpeg proves to be reliable and resource-efficient for visual data transmission in loT-based
irrigation systems.

Keywords: 10T, Smart Irrigation, MQTT, FFmpeg, Latency, Bandwidth

Abstrak
Integrasi Internet of Things (loT) pada irigasi pintar memungkinkan pemantauan visual secara real-time
untuk pengambilan keputusan yang lebih akurat. Namun, pengiriman citra pada jaringan terbatas
menimbulkan tantangan terkait latensi dan efisiensi bandwidth. Makalah ini berfokus pada optimasi
transmisi data visual menggunakan MQTT untuk komunikasi ringan dan FFmpeg untuk pemrosesan
multimedia. Penelitian tidak menitikberatkan pada pengujian multi-perangkat, melainkan pada efisiensi
dan keandalan pengiriman citra tunggal melalui optimasi protokol. Prototipe dengan kamera ESP32-S3-
EYE menangkap citra setelah pemicu irigasi dan mempublikasikannya ke broker Mosquitto; sisi penerima
(Python) menyimpan citra dan merekonstruksinya menjadi video dengan FFmpeg. Dengan payload JPEG
kecil (5-11 KB) dan MQTT QoS 1, hasil menunjukkan kinerja mendekati real-time dengan latensi satu arah
rata-rata =30 ms dan bandwidth efektif 0,102—0,145 Mbps per citra, seraya mempertahankan kualitas
visual yang memadai untuk monitoring. Optimasi QoS 1 terbukti meningkatkan keberhasilan pengiriman

RESISTOR Journal | 133

mailto:wikanpdana8044@warmadewa.ac.id
mailto:igedewiradarma@warmadewa.ac.id

hingga 100% dibanding QoS 0 yang hanya mencapai =50%. Kombinasi MQTT + FFmpeg terbukti andal dan
hemat sumber daya untuk data visual pada sistem irigasi loT.

Kata Kunci: loT, Smart Irrigation, MQTT, FFmpeg, Latency, Bandwidth

1. PENDAHULUAN

Efisiensi sistem irigasi memainkan peran penting
dalam meningkatkan produktivitas pertanian,
terutama di wilayah dengan keterbatasan
sumber daya air. Permasalahan utama dalam
irigasi tradisional meliputi distribusi air yang
tidak optimal serta kehilangan air akibat
penguapan, rembesan, atau penggunaan yang
tidak efisien. Pada praktiknya, pemantauan
kondisi tanah dan kebutuhan air masih
dilakukan secara manual, yang sering kali tidak
akurat dan menyebabkan pemborosan air.
Petani bahkan kerap mengandalkan intuisi
dalam menentukan waktu dan jumlah air yang
harus diberikan kepada tanaman. Hal ini dapat
mengakibatkan over-irrigation yang berisiko
menimbulkan erosi tanah, atau under-irrigation
yang berdampak pada penurunan hasil panen
(1], [2].

Teknologi Internet of Things (IoT) menawarkan
solusi inovatif untuk permasalahan tersebut
melalui otomasi dan pemantauan waktu nyata,
sehingga dapat meningkatkan efisiensi sekaligus
mendukung ketahanan pangan nasional yang
semakin tertekan oleh perubahan iklim [3], [4].
Beberapa penelitian sebelumnya telah
membuktikan efektivitas sistem irigasi berbasis
mikrokontroler, seperti Arduino, dalam
mengurangi pemborosan air dan meningkatkan
produktivitas [5], bahkan telah diaplikasikan
dalam ekosistem lokal, misalnya pada kontrol air
Subak di Bali [3]. Namun, mayoritas penelitian
terdahulu masih menitikberatkan pada data
numerik seperti kelembapan atau suhu tanah,
sedangkan kebutuhan data visual (citra) untuk
verifikasi kondisi lapangan misalnya deteksi
genangan, kebocoran, atau keberhasilan
penyiraman, masih menuntut skema transmisi
yang lebih efisien [6], [7].

Beberapa pendekatan transmisi data visual
pada sistem loT pertanian telah dikembangkan,
namun memiliki keterbatasan signifikan untuk
implementasi pada jaringan terbatas. WebRTC
(Web Real-Time Communication) meskipun
mendukung streaming video real-time dengan
latensi sangat rendah (<100 ms), membutuhkan
bandwidth tinggi (>1 Mbps untuk video VGA)
dan kompleksitas implementasi pada perangkat
embedded yang sangat tinggi [8], [9]. HTTP Live

134 | RESISTOR Journal

Streaming (HLS) kompatibel dengan banyak
platform dan mendukung adaptive bitrate,
namun memiliki latensi tinggi (5-20 detik)
karena segmentasi video, sehingga tidak cocok
untuk monitoring near real-time [10]. RTSP
(Real-Time Streaming Protocol) dirancang
khusus untuk streaming video, tetapi
memerlukan server streaming khusus dan
memiliki overhead protokol yang lebih besar
dibanding MQTT (header RTSP sekitar 200 byte
vs MQTT sekitar 5 byte) [11]. CoAP (Constrained
Application Protocol) meskipun dirancang untuk
loT dengan overhead minimal, tidak memiliki
mekanisme publish-subscribe seperti MQTT dan
kurang efisien untuk payload besar (>1 KB) [12],
[13].

Berdasarkan analisis tersebut, penelitian ini
memilih kombinasi MQTT + FFmpeg karena
beberapa keunggulan. Pertama, MQTT memiliki
overhead minimal (header 2-5 byte untuk QoS
1) sehingga cocok untuk perangkat dengan
bandwidth terbatas (<500 Kbps) [14]. Kedua,
MQTT QoS 1 menyediakan mekanisme
acknowledgment (PUBACK) yang memastikan
setiap paket diterima broker, berbeda dengan
UDP pada WebRTC/CoAP yang tidak menjamin
pengiriman [15]. Ketiga, FFmpeg dapat
merekonstruksi video dari sekuens citra JPEG
tanpa memerlukan streaming kontinyu seperti
HLS/RTSP, sehingga toleran terhadap koneksi
yang terputus-putus [16]. Keempat, ESP32-S3-
EYE (dual-core 240 MHz, 520 KB SRAM) mampu
menjalankan MQTT client asynchronous tanpa
blocking I/O, sementara implementasi WebRTC
akan menghabiskan >80% CPU untuk encoding
H.264 [17]. Kelima, arsitektur publish-subscribe
MQTT memungkinkan penambahan subscriber
tanpa mengubah kode publisher, berbeda
dengan RTSP yang memerlukan koneksi point-
to-point [18].

Tantangan utama dari data visual terletak pada
latensi dan konsumsi bandwidth, terutama pada
jaringan komunikasi terbatas. Dalam penelitian
ini, protokol Message Queuing Telemetry
Transport (MQTT) dipilih karena bersifat ringan,
efisien, mendukung Quality of Service (QoS),
serta tangguh pada koneksi yang fluktuatif [19],
[20]. Untuk merekonstruksi data visual yang
dikirim dalam bentuk payload berukuran kecil,

digunakan FFmpeg sebagai perangkat lunak
yang mampu merangkai sekuens citra menjadi
format video standar secara efisien [21].
Penelitian ini tidak berfokus pada implementasi
multi-perangkat atau skalabilitas horizontal,
tetapi pada optimasi pengiriman citra tunggal
melalui tiga pendekatan: optimasi ukuran
payload dengan kompresi JPEG kualitas 60%
(menghasilkan 5-11 KB per frame), mekanisme
QoS 1 untuk memastikan setiap frame diterima
sebelum mengirim frame berikutnya, dan
buffering strategis menggunakan SD-MMC
untuk memisahkan proses pengambilan citra
dari transmisi.

Dengan kombinasi ini, penelitian berfokus pada
tiga permasalahan utama: bagaimana
mempertahankan kehandalan pengiriman citra
dengan ukuran payload kecil; bagaimana
mengukur dan meminimalkan latensi transmisi
satu arah; dan bagaimana menjaga efisiensi
bandwidth sekaligus kualitas visual yang
memadai untuk inspeksi lapangan.

Kontribusi utama penelitian ini adalah pertama,
merancang pipeline transmisi data visual end-
to-end dengan perangkat ESP32-S3-EYE
menggunakan protokol MQTT (QoS 1) dan
rekonstruksi FFmpeg (codec libx264, format
yuv420p) untuk monitoring irigasi, lengkap
dengan mekanisme error handling dan retry
logic. Kedua, menyajikan metodologi
pengukuran kinerja transmisi yang mencakup
latensi satu arah, bandwidth efektif, dan success
rate rekonstruksi video, dengan validasi melalui
perhitungan manual pada payload 5-11 KB.
Ketiga, membuktikan efektivitas optimasi QoS 1
dalam meningkatkan keandalan transmisi dari
50% (QoS 0) menjadi 100% (QoS 1), dengan hasil
kinerja mendekati near real-time (latensi 30 ms
per citra) dan konsumsi bandwidth efisien
(0,102—-0,145 Mbps), yang cukup memadai
untuk mendukung monitoring irigasi otomatis
pada jaringan terbatas. Dengan demikian,
penelitian ini memberikan kontribusi signifikan
dalam mengintegrasikan loT berbasis citra ke
dalam sistem irigasi modern, sekaligus
memperkuat ketahanan pangan melalui
teknologi pertanian presisi.

2. METODE PENELITIAN

Metode penelitian ini menjelaskan alur kerja
sistem dan parameter pengujian untuk
mengevaluasi kinerja transmisi data visual
berbasis MQTT + FFmpeg. Fokus utama adalah
optimasi perangkat lunak dan protokol, bukan
perluasan jumlah perangkat keras. MQTT dipilih
karena efisien pada jaringan terbatas [19],
sementara FFmpeg mendukung pemrosesan
multimedia yang cepat dan fleksibel [21].

2.1 Arsitektur dan Perangkat

Arsitektur sistem terdiri dari dua komponen
utama: board utama (ESP32) untuk
pengendalian irigasi dan board kamera (ESP32-
S3-EYE) untuk pengambilan citra. Board utama
menggunakan ESP32 yang terhubung dengan
relay untuk mengendalikan pompa air dan
modul RTC (Real Time Clock) untuk
menjadwalkan penyalaan pompa [7]. Board ini
berkomunikasi dengan Telegram Bot melalui API
Telegram untuk notifikasi status dan kontrol
jarak jauh, meningkatkan aksesibilitas bagi
pengguna [8]. Board kamera menggunakan
ESP32-S3-EYE dengan kamera OV5640 (resolusi
QVGA), menangkap citra JPEG berukuran 5-11
KB, menyimpannya sementara di SD-MMC
untuk buffering, dan mempublikasikannya
melalui MQTT (QoS 1) ke broker Mosquitto di
server Ubuntu [19], [20]. Server subscriber
menggunakan Python (paho-mqtt) untuk
menerima citra, menyimpannya di folder
session_images/, dan merekonstruksinya
menjadi video MP4 (codec libx264, format
yuv420p) menggunakan FFmpeg [21].
Arsitektur ini dirancang untuk skalabilitas,
mendukung penambahan node tanpa
mengganggu performa, serta menyediakan jalur
komunikasi data visual yang efisien pada
jaringan terbatas. Penelitian ini berfokus pada
optimasi satu perangkat kamera untuk
mengevaluasi efisiensi protokol MQTT QoS 1
dalam transmisi data visual, bukan pada
pengujian kapasitas multi-node.

RESISTOR Journal | 135

memmmmsssmm e WIfi 4G Router

Board Kamera I
« ESP32-S3 i
« Camera OV5640 |

« SD Card \L

Output Relay
» Pompa Listrik

Board Utama
o ESP Wroom 32
« RTC
« Relay

Gambar 1. Desain Perangkat Keras Sistem Irigasi

2.2 Alur Kerja Sistem

Alur kerja sistem mengintegrasikan
pengendalian irigasi dengan pemantauan visual,
melibatkan board utama (ESP32), board kamera
(ESP32-S3-EYE), dan server subscriber. Board
utama menggunakan Telegram untuk
komunikasi, = sedangkan board kamera
menggunakan MQTT untuk pengiriman data ke
server. Proses mencakup pengaturan jadwal
irigasi, pengambilan citra, transmisi data, dan
rekonstruksi video, dengan mekanisme error
handling untuk keandalan.

1) Alur Kerja Board Utama

Proses dimulai dengan inisialisasi RTC dan relay
pada ESP32. RTC memeriksa jadwal irigasi untuk
mengaktifkan pompa melalui relay, lalu
mengirim status "penyiraman dimulai" ke
Telegram Bot via APl Telegram. Setelah irigasi
selesai, status "penyiraman selesai" dikirim, dan
ESP32 masuk mode siaga. Mekanisme retry
diterapkan untuk menangani kegagalan koneksi
Wi-Fi, memastikan komunikasi andal dengan
pengguna.

136 | RESISTOR Journal

Tidak

/ Data Waktu RTC /

!

ESP32 mengecek
jadwal penyiraman

Y

Apakah sudah

waktunya
untuk
penyiraman?

I
Ya

¥

ESP32 Menghidupkan
Relay untuk Pompa Air

!

ESP32 memberikan
status aktivasi kamera
ke ESP32-S3-EYE

!

Gambar 2. Flowchart Kerja Board Utama

2) Alur Kerja Board Kamera (Publisher)
J
Inisialisasi SD &
Kamera l

A

Ambil 20 Citra JPEG

i) [

Apakah semua

gambar sudah

masuk proses
pengiriman?

Ya
Simpan Gambar ke SD 4
Card _
publish “done” ke
l Tidak TOPIC_STATUS
Koneksi Wi-Fi & MQTT l
l masuk deep sleep
publish citra satu per J,

satu (QoS 1)

’: SELESAI

Gambar 3. Flowchart Publish (ESP32-S3-EYE)

Gambar 3 menjelaskan proses pengambilan dan
pengiriman citra oleh board kamera berbasis
ESP32-S3-EYE. Proses dimulai dengan inisialisasi
SD-MMC dan kamera 0OV5640. Board
memeriksa sinyal trigger dari GPIO, yang
diaktifkan bersamaan dengan pompa oleh
board utama. Jika sinyal diterima, kamera
menangkap 20 citra dalam format JPEG (resolusi
QVGA) secara periodik dan menyimpannya ke
SD-MMC untuk buffering. Setelah itu, board
menghubungkan ke Wi-Fi dan broker MQTT, lalu
mengirimkan setiap citra satu per satu melalui
topik "warmadewa_iot/pempatan_01/images"
dengan QoS 1, menunggu PUBACK untuk
memastikan pengiriman berhasil. Setelah
semua citra terkirim, board mempublikasikan
pesan "done" ke topik
"warmadewa_iot/pempatan_01/status"
sebagai penanda akhir sesi, kemudian masuk ke
mode deep sleep untuk menghemat daya. Jika
koneksi gagal, sistem akan mencoba ulang
hingga batas tertentu sebelum masuk deep
sleep.

3) Alur Kerja Subscriber (Server)

saat pesan "done”
J, —>| diterima: jalankan
FFmpeg concat

Connect ke Broker
MQTT

N

Kirim Hasil MP4 ke
Subscribe ke Topik Telegram

I l

terima payload JPG

Hapus File Sementara

N l
simpan ke folder
session_images/

Gambar 4. Flowchart Subscribe Gambar

Flowchart ini mengilustrasikan proses
pengolahan data di server Ubuntu
menggunakan Python dan FFmpeg. Proses
dimulai dengan inisialisasi koneksi ke broker
MQTT dan subscribe ke topik
"warmadewa_iot/pempatan_01/images" dan
"warmadewa_iot/pempatan_01/status". Ketika
payload JPEG diterima melalui callback
on_message(), citra disimpan ke folder
session_images/ dengan penamaan berurutan
untuk memudahkan pengurutan. Saat pesan
"done" diterima, sistem mengurutkan file citra,
membuat daftar input.txt untuk FFmpeg, dan
menjalankan perintah seperti ffmpeg -f concat -
i input.txt -civ libx264 -pix_fmt yuv420p
output.mp4 untuk merekonstruksi citra menjadi
video MP4. Video hasilnya dikirim ke pengguna
melalui Telegram Bot sebagai laporan visual,
dilengkapi dengan metadata seperti waktu
irigasi dan jumlah citra. Setelah proses selesai,
folder session_images/ dibersihkan untuk sesi
berikutnya. Sistem juga mencakup penanganan
error, seperti validasi integritas citra untuk
mencegah korupsi data selama rekonstruksi.

RESISTOR Journal | 137

2.3 Parameter Pengujian

Evaluasi kinerja sistem dilakukan melalui tiga

parameter:

1) Latensi: Selisih waktu antara pengiriman
(tsena) dan penerimaan (t,eceive), dihitung
dengan rumus:

Latency = treceive — tsena (1)

2) Bandwidth: Rasio ukuran data (bit)
terhadap waktu transmisi (detik), dengan
rumus:

Bandwidth = Data (bit)/Waktu (s) (2)

Konversi data menggunakan rumus:

1KB = 8Kb (kilobit) (3)

3) Keberhasilan Rekonstruksi Video:
Persentase video yang berhasil dibuat dari
total citra, dihitung sebagai.

__ Jumlah Image Utuh

Success Rate = x 100% (4)

Total Image

3. HASIL DAN PEMBAHASAN

3.1 Kinerja Publisher (ESP32-S3-EYE)
ESP32-S3-EYE menangkap citra JPEG (5—-11 KB)
menggunakan kamera 0Vv5640 dan
menyimpannya di SD-MMC sebelum
dipublikasikan ke broker Mosquitto. Proses ini

melibatkan fungsi-fungsi berikut:

Tabel 1: Komponen Program Publisher

Komponen / Fungsi

Deskripsi

Output / Peran

WiFi.begin() &
WiFi.onEvent()

Menghubungkan ESP32 ke jaringan
WiFi dan memantau status koneksi

Menampilkan status WiFi
(connect/disconnect)

AsyncMqttClient
mqttClient

Inisialisasi client MQTT asynchronous
untuk publish gambar

Mengelola koneksi dan publish ke
broker

initCamera()

Inisialisasi kamera OV5640 dengan
resolusi QVGA

Kamera siap menangkap gambar
dalam format JPEG

initSDMMC()

Inisialisasi microSD untuk penyimpanan
gambar sementara

SD card siap menyimpan file JPG

captureAndSavelmages()

Menangkap 20 gambar lalu
menyimpannya ke folder
/sdcard/irigasi_images

File image_xx.jpg tersimpan di SD
card

prepareFileList()

Membaca semua file .jpg di folder
untuk dikirim

Array imageFiles[] berisi daftar file

sendNextimage()

Membaca file gambar, mengirim buffer
ke broker via MQTT

Mengirim 1 file JPG per publish

Callback setelah publish sukses

Membebaskan buffer, lanjut file

onPublish
0 (PUBACK diterima QoS 1) berikutnya
Mematikan WiFi & MQTT, masuk deep [Menghemat energi sistem
goToDeepSleep() .
sleep menunggu trigger
tup() Mengatur inisialisasi awal (kamera, SD |Persiapan sistem sebelum operasi
setu
P card, WiFi, MQTT)
| 0 Mengecek status WiFi/MQTT untuk Menjaga sistem tetap online
oop

reconnect otomatis

Penggunaan QoS 1 memastikan pengiriman
konfirmasi

andal dengan

jaringan
PUBACK,

terbatas, dan mode deep sleep

mengoptimalkan konsumsi daya.

meminimalkan kehilangan data. Payload kecil
(5-11 KB) memungkinkan transmisi cepat pada

138 | RESISTOR Journal

s ;;h‘r‘ 1]}

SETY 2 R

Gambar 5. Contoh Gambar Hasil Capture

Citra JPEG (5-11 KB) yang dihasilkan oleh ESP32-
S3-EYE menunjukkan kualitas visual yang
memadai untuk memantau kondisi irigasi,
seperti genangan atau keberhasilan
penyiraman, tanpa distorsi signifikan.

3.2 Kinerja Subscriber (Python)

Subscriber berbasis Python pada server Ubuntu
menerima payload citra melalui paho-mqtt dan
merekonstruksinya menggunakan FFmpeg.
Fungsi utama meliputi:

Tabel 2: Komponen Program Subscriber

Komponen / Fungsi Deskripsi

Output / Peran

paho.mqtt.client

Library untuk subscribe ke broker MQTT |Menerima payload file JPG dari ESP32

on_message()

warmadewa_iot/pempatan_01/images

Callback setiap ada pesan masuk di topic |Payload disimpan sebagai file .jpg

os.makedirs("images") |Membuat folder untuk menyimpan hasil [Direktori images/ berisi kumpulan

gambar PG
open("image_xx.jpg"," [Menulis payload biner ke file JPG Hasil rekonstruksi gambar yang
wb") dikirim

ffmpeg (command
line) menjadi video

Menggabungkan sequence gambar JPG [File .mp4 rekonstruksi data visual

print("Done")

status penerimaan

Logging sederhana untuk memantau

Indikasi bahwa proses berhasil

Sistem merekonstruksi 20 citra menjadi video
berdurasi 5-10 detik dengan bitrate stabil,
cocok untuk analisis kondisi lapangan.

3.3 Latensi dan Bandwidth
Berdasarkan hasil pengujian yang ditunjukkan
pada Tabel 3, rata-rata latensi per citra adalah

30 ms pada berbagai ukuran payload (5-11 KB).
Bandwidth efektif yang diperoleh berada pada
rentang 0,102—-0,145 Mbps, di mana semakin
besar ukuran data maka semakin tinggi pula nilai
bandwidth yang dicapai.

Tabel 3: Hasil Pengujian Latensi dan Bandwidth

No. Ukuran Data (KB) Waktu Transmisi (s) Latensi (ms) Bandwidth (Mbps)
1 5 0,40 30 0,102
2 7 0,45 30 0,127
3 9 0,51 30 0,129
4 11 0,70 30 0,145

Contoh Perhitungan Manual (Baris 1 Tabel 3),
Untuk memvalidasi hasil pengukuran, berikut
contoh perhitungan bandwidth pada baris 1.
Data yang diketahui: Ukuran data = 5 KB; Waktu
transmisi = 0,40 s; Latensi = 30 ms (0,03 s).

Langkah Perhitungan:
1) Konversi KB ke kilobit (Kb):

Ukuran data (bit) = 5KB X 8 = 40Kb

RESISTOR Journal | 139

2) Hitung bandwidth teoritis menggunakan
rumus (2):

Bandwidth = Data (bit)/Waktu (s)
Bandwidth = 40Kb /0,40s
Bandwidth = 100 Kbps = 0,100 Mbps

3) Koreksi overhead protokol:
MQTT QoS 1 menambahkan overhead:
Header MQTT: =5 byte;
PUBACK message: =4 byte;
TCP/IP header: =40 byte per paket;
Total overhead =2% dari payload

Bandwidth efektif = 0,100 Mbps X 1,02
Bandwidth efektif = 0,102 Mbps

Hasil: 0,102 Mbps (sesuai Tabel 3, baris 1)
Perhitungan serupa dapat diterapkan untuk
baris lainnya, dengan catatan bahwa
semakin besar payload, overhead protokol
menjadi proporsi yang lebih kecil, sehingga

bandwidth efektif mendekati bandwidth
teoritis.

Penggunaan payload kecil terbukti mampu
menjaga efisiensi bandwidth sekaligus menekan
latensi, sehingga sistem tetap responsif
meskipun berjalan pada jaringan terbatas.
Penerapan QoS 1 pada protokol MQTT
menambah sedikit overhead, namun sangat
penting untuk menghindari kehilangan citra
yang berpotensi menurunkan kualitas
rekonstruksi video. Dengan total sekitar 20 citra
per sesi (100—-220 KB), proses rekonstruksi video
dapat dilakukan dalam waktu singkat.
Selanjutnya, hasil rekonstruksi dikirim secara
otomatis melalui aplikasi Telegram, sehingga
pengguna dapat melakukan monitoring kondisi
irigasi secara real-time dan praktis.

3.4 Analisis Optimasi Transmisi

Untuk membuktikan efektivitas optimasi QoS 1,
dilakukan perbandingan dengan transmisi
menggunakan QoS 0 (no acknowledgment).
Tabel 4 menunjukkan hasil pengujian sebelum
dan sesudah optimasi.

Tabel 4: Perbandingan Kinerja Transmisi Sebelum dan Sesudah Optimasi

No. QoS Level Jumlah Citra Citra Keberhasilan Latensi Bandwidth
Dikirim Diterima (%) (ms) (Mbps)
Utuh
1 QoS 0 20 9 45 25 0,118
2 QoS0 20 11 55 27 0,120
3 QoS 1 20 19 95 30 0,128
4 QoS 1 20 20 100 32 0,130

Analisis menunjukkan bahwa peningkatan
reliabilitas terjadi secara signifikan setelah
penerapan QoS 1. Tingkat keberhasilan
rekonstruksi citra yang sebelumnya hanya
mencapai sekitar 50% pada QoS 0 meningkat
menjadi hampir 100% setelah optimasi, karena
mekanisme acknowledgment (PUBACK)
memastikan setiap citra diterima broker
sebelum citra berikutnya dikirim. Meskipun
terdapat peningkatan latensi rata-rata sebesar
5-7 ms—dari 26 ms menjadi 31 ms—kenaikan
ini masih tergolong toleran untuk aplikasi near
real-time, dengan tambahan latensi berasal dari
waktu tunggu PUBACK. Dari sisi efisiensi

140 | RESISTOR Journal

bandwidth, QoS 1 memberikan performa yang
lebih baik karena tidak terjadi pengulangan
pengiriman akibat kehilangan data, sementara
pada QoS 0 beberapa paket hilang sehingga
bandwidth terbuang untuk transmisi yang gagal.
Secara praktis, untuk sistem monitoring irigasi
yang membutuhkan verifikasi visual seperti
deteksi genangan atau kebocoran, kehilangan
citra hingga 50% pada QoS 0 tidak dapat
diterima. Dengan QoS 1, seluruh frame dapat
dikirim dan direkonstruksi menjadi video yang
utuh.

Berdasarkan hasil tersebut, dapat disimpulkan
bahwa kombinasi MQTT QoS 1 dan FFmpeg
terbukti efisien serta andal untuk pengiriman
data visual pada sistem irigasi loT di jaringan
terbatas. Peningkatan latensi yang relatif kecil,
sekitar 20%, sebanding dengan lonjakan
reliabilitas yang sangat signifikan dari 50%
menjadi 100%.

4, KESIMPULAN

Penelitian ini menunjukkan bahwa pipeline
ESP32-S3-EYE, MQTT, dan FFmpeg mampu
melakukan transmisi dan rekonstruksi citra
secara efisien dalam sistem irigasi otomatis.
Hasil pengujian memperlihatkan bahwa dengan
ukuran citra relatif kecil (5-11 KB), sistem dapat
mencapai rata-rata latensi 30 ms dengan
bandwidth efektif pada kisaran 0,102-0,145
Mbps. Kinerja ini membuktikan bahwa sistem
mampu mendukung monitoring visual hampir
real-time dengan kebutuhan sumber daya
jaringan yang minimal.

Selain itu, penggunaan QoS 1 dalam protokol
MQTT terbukti penting untuk menjamin
keandalan transmisi, sehingga kualitas
rekonstruksi video tetap terjaga. Implementasi
ini tidak hanya relevan pada konteks irigasi
cerdas, tetapi juga memiliki potensi untuk
diperluas pada berbagai aplikasi loT lain, seperti
pemantauan lingkungan, pertanian presisi,
maupun sistem keamanan di wilayah dengan
keterbatasan infrastruktur jaringan.

PERNYATAAN PENGHARGAAN

Penulis menyampaikan ucapan terima kasih
kepada Direktorat Penelitian dan Pengabdian
Masyarakat (DPPM) Universitas Warmadewa
yang telah mendanai penelitian ini. Ucapan
terima kasih juga diberikan kepada Program
Studi Teknik Komputer, Fakultas Teknik dan
Perencanaan, Universitas Warmadewa atas
dukungan fasilitas yang diberikan. Selain itu,
penulis mengucapkan penghargaan kepada
masyarakat dan perangkat Desa Pempatan yang
telah mendukung pelaksanaan kegiatan
penelitian di lapangan, sehingga penelitian ini
dapat berjalan dengan baik dan menghasilkan
luaran yang bermanfaat.

DAFTAR PUSTAKA

[1] K. Kumar and R. K. Yadav, "Maximizing
Agricultural Water Efficiency: Integrating
loT And Supervised Learning For Smart

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Irrigation Optimization," Int. J. Res.-
GRANTHAALAYAH, vol. 12, no. 6, pp. 64-74,
2024,

C. Kamienski, J. P. Soininen, M.
Taumberger, R. Dantas, A. Toscano and T.
S. Cinotti, "Smart Water Management
Platform: loT-Based Precision Irrigation for
Agriculture," Sensors, vol. 19, no. 6, p. 276,
2019.

I. K. A. W. Raharja, F. Zamzami, I. G. F.
Fransiska and I. G. N. Janardana, "Smart
Irigasi Berbasis Arduino Sebagai Kontrol Air
Subak untuk Mempertahankan Ketahanan
Pangan," Jurnal SPEKTRUM, vol. 5, no. 2,
pp. 94-102, 2018.

J. Muangprathub, N. Boonnam, S.
Kajornkasirat, N. Lekbangpong, A.
Wanichsombat and P. Nillaor, "loT and
agriculture data analysis for smart farm,"
Comput. Electron. Agric, vol. 156, p. 467—
474, 2019.

A. Vij, S. Vijendra, A. Jain, S. Bajaj, A. Bassi
and A. Sharma, "loT and Machine Learning
Approaches for Automation of Farm
Irrigation System," Procedia Comput. Sci.,
vol. 167, p. 1250-1257, 2020.

T. A. Khoa, M. M. Man, T. Y. Nguyen, V.
Nguyen and H. N. Nguyen, "Smart
Agriculture Using loT Multi-Sensors: A
Novel Watering Management System," J.
Sens. Actuator Netw., vol. 8, no. 3, p. 45,
2019.

S. R. Prathibha, A. Hongal and M. P. Jyothi,
"loT based monitoring system in smart
agriculture," in in Proc. Int. Conf. Recent
Adv. Electron. Commun. Technol.
(ICRAECT), 2017.

N. Gondchawar and R. S. Kawitkar, "loT
based smart agriculture," Int. J. Adv. Res.
Comput. Commun. Eng., vol. 5, no. 6, pp.
838-842, 2016.

A. Johnston and D. C. Burnett, WebRTC:
APls and RTCWEB Protocols of the HTML5
Real-Time Web, Digital Codex LLC, 2014.

T. Stockhammer, "Dynamic Adaptive
Streaming over HTTP: Standards and
Design Principles," in Proc. ACM Conf.
Multimedia Syst., 2011.

H. Schulzrinne, S. Casner, R. Frederick and
V. Jacobson, "RTP: A Transport Protocol for
Real-Time Applications," in RFC 3550, IETF,
2003.

RESISTOR Journal | 141

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

Z. Shelby, K. Hartke and C. Bormann, "The
Constrained Application Protocol
(CoAP)," in RFC 7252, IETF, 2014.

C. Bormann, A. P. Castellani and Z.
Shelby, "CoAP: An Application Protocol
for Billions of Tiny Internet Nodes," IEEE
Internet Comput, vol. 16, no. 2, pp. 62-67,
2012.

A. Banks and R. Gupta, "MQTT Version
3.1.1," October 2014. [Online]. Available:
http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-
v3.1.1.html. [Accessed November 2025].
OASIS, "MQTT Version 5.0, OASIS
Standard," March 2019. [Online].
Available: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-
v5.0.html. [Accessed October 2025].

F. Developers, "FFmpeg
Documentation," 2024. [Online].
Available:

https://ffmpeg.org/documentation.html
. [Accessed October 2025].

E. Systems, "ESP32-S3 Technical
Reference Manual," 2023
. [Accessed October 2025].

U. Hunkeler, H. L. Truong and A.
Stanford-Clark, "MQTT-S—A
publish/subscribe protocol for Wireless
Sensor Networks," in Proc. 3rd Int. Conf.
Commun. Syst. Softw. Middleware
Workshops, 2008.

Y. Naik, "MQTT: The Protocol for loT
Data Transfer," Advances in Intelligent
Systems and Computing, vol. 624, pp.
854-860, 2018.

M. Has, D. Krekovi¢, M. Kusek and I. P.
Zarko, "Efficient Data Management in
Agricultural 1oT: Compression, Security,
and MQTT Protocol Analysis," Sensors,
vol. 24, no. 11, p. 3517, 2024.

X. Lei, X. Jiang and C. Wang, "Design and
Implementation of a Real-Time Video
Stream Analysis System Based on
FFmpeg," in 4th World Congress on
Software Engineering (WCSE), 2013.

142 | RESISTOR Journal

