Optimasi Pengiriman dan Rekonstruksi Data Visual pada Sistem Irigasi Otomatis Berbasis IoT menggunakan MQTT dan FFmpeg

Authors

  • I Kadek Agus Wahyu Raharja Universitas Warmadewa
  • Gde Wikan Pradnya Dana
  • I Gede Wira Darma Universitas Warmadewa
  • I Gusti Agung Made Yoga Mahaputra Politeknik Negeri Bali

DOI:

https://doi.org/10.31598/jurnalresistor.v8i3.1955

Keywords:

IoT, Smart Irrigation, MQTT, FFmpeg, Latency, Bandwidth

Abstract

Integrasi Internet of Things (IoT) pada irigasi pintar memungkinkan pemantauan visual secara real-time untuk pengambilan keputusan yang lebih akurat. Namun, pengiriman citra pada jaringan terbatas menimbulkan tantangan terkait latensi dan efisiensi bandwidth. Makalah ini berfokus pada optimasi transmisi data visual menggunakan MQTT untuk komunikasi ringan dan FFmpeg untuk pemrosesan multimedia. Penelitian tidak menitikberatkan pada pengujian multi-perangkat, melainkan pada efisiensi dan keandalan pengiriman citra tunggal melalui optimasi protokol. Prototipe dengan kamera ESP32-S3-EYE menangkap citra setelah pemicu irigasi dan mempublikasikannya ke broker Mosquitto; sisi penerima (Python) menyimpan citra dan merekonstruksinya menjadi video dengan FFmpeg. Dengan payload JPEG kecil (5–11 KB) dan MQTT QoS 1, hasil menunjukkan kinerja mendekati real-time dengan latensi satu arah rata-rata ≈30 ms dan bandwidth efektif 0,102–0,145 Mbps per citra, seraya mempertahankan kualitas visual yang memadai untuk monitoring. Optimasi QoS 1 terbukti meningkatkan keberhasilan pengiriman hingga 100% dibanding QoS 0 yang hanya mencapai ≈50%. Kombinasi MQTT + FFmpeg terbukti andal dan hemat sumber daya untuk data visual pada sistem irigasi IoT.

References

[1] K. Kumar and R. K. Yadav, "Maximizing Agricultural Water Efficiency: Integrating IoT And Supervised Learning For Smart Irrigation Optimization," Int. J. Res.-GRANTHAALAYAH, vol. 12, no. 6, pp. 64-74, 2024.

[2] C. Kamienski, J. P. Soininen, M. Taumberger, R. Dantas, A. Toscano and T. S. Cinotti, "Smart Water Management Platform: IoT-Based Precision Irrigation for Agriculture," Sensors, vol. 19, no. 6, p. 276, 2019.

[3] I. K. A. W. Raharja, F. Zamzami, I. G. F. Fransiska and I. G. N. Janardana, "Smart Irigasi Berbasis Arduino Sebagai Kontrol Air Subak untuk Mempertahankan Ketahanan Pangan," Jurnal SPEKTRUM, vol. 5, no. 2, pp. 94-102, 2018.

[4] J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat and P. Nillaor, "IoT and agriculture data analysis for smart farm," Comput. Electron. Agric, vol. 156, p. 467–474, 2019.

[5] A. Vij, S. Vijendra, A. Jain, S. Bajaj, A. Bassi and A. Sharma, "IoT and Machine Learning Approaches for Automation of Farm Irrigation System," Procedia Comput. Sci., vol. 167, p. 1250–1257, 2020.

[6] T. A. Khoa, M. M. Man, T. Y. Nguyen, V. Nguyen and H. N. Nguyen, "Smart Agriculture Using IoT Multi-Sensors: A Novel Watering Management System," J. Sens. Actuator Netw., vol. 8, no. 3, p. 45, 2019.

[7] S. R. Prathibha, A. Hongal and M. P. Jyothi, "IoT based monitoring system in smart agriculture," in in Proc. Int. Conf. Recent Adv. Electron. Commun. Technol. (ICRAECT), 2017.

[8] N. Gondchawar and R. S. Kawitkar, "IoT based smart agriculture," Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, no. 6, pp. 838-842, 2016.

[9] A. Johnston and D. C. Burnett, WebRTC: APIs and RTCWEB Protocols of the HTML5 Real-Time Web, Digital Codex LLC, 2014.

[10] T. Stockhammer, "Dynamic Adaptive Streaming over HTTP: Standards and Design Principles," in Proc. ACM Conf. Multimedia Syst., 2011.

[11] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications," in RFC 3550, IETF, 2003.

[12] Z. Shelby, K. Hartke and C. Bormann, "The Constrained Application Protocol (CoAP)," in RFC 7252, IETF, 2014.

[13] C. Bormann, A. P. Castellani and Z. Shelby, "CoAP: An Application Protocol for Billions of Tiny Internet Nodes," IEEE Internet Comput, vol. 16, no. 2, pp. 62-67, 2012.

[14] A. Banks and R. Gupta, "MQTT Version 3.1.1," October 2014. [Online]. Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html. [Accessed November 2025].

[15] OASIS, "MQTT Version 5.0, OASIS Standard," March 2019. [Online]. Available: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html. [Accessed October 2025].

[16] F. Developers, "FFmpeg Documentation," 2024. [Online]. Available: https://ffmpeg.org/documentation.html. [Accessed October 2025].

[17] E. Systems, "ESP32-S3 Technical Reference Manual," 2023

. [Accessed October 2025].

[18] U. Hunkeler, H. L. Truong and A. Stanford-Clark, "MQTT-S—A publish/subscribe protocol for Wireless Sensor Networks," in Proc. 3rd Int. Conf. Commun. Syst. Softw. Middleware Workshops, 2008.

[19] Y. Naik, "MQTT: The Protocol for IoT Data Transfer," Advances in Intelligent Systems and Computing, vol. 624, pp. 854-860, 2018.

[20] M. Has, D. Kreković, M. Kušek and I. P. Žarko, "Efficient Data Management in Agricultural IoT: Compression, Security, and MQTT Protocol Analysis," Sensors, vol. 24, no. 11, p. 3517, 2024.

[21] X. Lei, X. Jiang and C. Wang, "Design and Implementation of a Real-Time Video Stream Analysis System Based on FFmpeg," in 4th World Congress on Software Engineering (WCSE), 2013.

Downloads

Published

2025-12-31

How to Cite

Raharja, I. K. A. W., Gde Wikan Pradnya Dana, I Gede Wira Darma, & I Gusti Agung Made Yoga Mahaputra. (2025). Optimasi Pengiriman dan Rekonstruksi Data Visual pada Sistem Irigasi Otomatis Berbasis IoT menggunakan MQTT dan FFmpeg. Jurnal RESISTOR (Rekayasa Sistem Komputer), 8(3), 133–142. https://doi.org/10.31598/jurnalresistor.v8i3.1955