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Abstract 
 

The current research examines the effectiveness of Convolutional Neural Networks (CNNs) in 
classifying mental states from EEG data through statistical features. Conventional EEG 
classification frequently depends on raw signals or picture transformations, which may 
insufficiently utilize feature-level differentiations. This research presents a direct statistical 
feature-based CNN methodology to enhance classification accuracy while minimizing 
computational complexity. Electroencephalogram data were obtained from 10 subjects utilizing 
the Muse Headband, resulting in 200 samples (100 in each category). To reduce training 
instability resulting from the constrained dataset, augmentation approaches expanded the sample 
size to 1000. The optimized CNN model (32 units, learning rate 0.01, 90 epochs) attained 98% 
accuracy using enhanced data, illustrating the effectiveness of augmentation in stabilizing 
training. Comparative analysis with prior studies validates that CNNs can effectively categorize 
statistical EEG data; however, subsequent research should investigate hybrid architectures 
(CNN-GRU, Transformers) to enhance temporal modeling. These findings enhance EEG-based 
mental state classification by demonstrating the application of statistical features in deep learning 
models and highlighting the significance of dataset size and augmentation. 

 
Keywords: convolutional neural network, classification, electroencephalogram, mental state, statistical 
data 

 
Abstrak 

 
Penelitian saat ini meneliti efektivitas Convolutional Neural Networks (CNN) dalam mengklasifikasikan 
kondisi mental dari data EEG pada fitur-fitur statistik. Klasifikasi EEG konvensional sering kali bergantung 
pada sinyal mentah atau konversi gambar, yang mungkin tidak cukup memanfaatkan perbedaan pada 
tingkat fitur. Penelitian ini menyajikan metodologi CNN berbasis fitur statistik secara langsung untuk 
meningkatkan akurasi klasifikasi sekaligus meminimalkan kompleksitas komputasi. Data 
electroencephalogram diperoleh dari 10 subjek dengan menggunakan Muse Headband, menghasilkan 
200 sampel (100 sampel di setiap kategori). Agar dapat mengurangi ketidakstabilan pelatihan yang 
diakibatkan oleh dataset yang terbatas, pendekatan augmentasi memperluas ukuran sampel menjadi 
1000. Model CNN yang dioptimalkan (32 unit, laju pembelajaran 0,01, 90 epoch) mencapai akurasi 98% 
dengan menggunakan data yang diperbanyak, yang menggambarkan keefektifan augmentasi dalam 
menstabilkan pelatihan. Analisis komparatif dengan penelitian sebelumnya memvalidasi bahwa CNN 
dapat secara efektif mengkategorikan data statistik EEG; namun, penelitian selanjutnya harus menyelidiki 
arsitektur hibrida (CNN-GRU, Transformers) untuk meningkatkan pemodelan temporal. Hasil penelitian 
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ini meningkatkan klasifikasi kondisi mental berbasis EEG dengan mendemonstrasikan penerapan fitur 
statistik dalam model pembelajaran yang mendalam dan menegaskan pentingnya ukuran dan 
penambahan dataset. 
 
Kata kunci: convolutional neural network, klasifikasi, electroencephalogram, kondisi mental, data statistik 
  
1. INTRODUCTION 
Electroencephalogram (EEG) technology to 
classify mental states has gained popularity in 
brain-computer interaction, cognitive 
monitoring, and mental health assessments. 
EEG is a non-invasive technique that detects 
brain activity with high temporal resolution, 
making it ideal for identifying specific mental 
states like concentration and relaxation. 
Portable and reasonably priced EEG equipment 
like the Muse Headband has increased research 
possibilities even more. The Muse Headband 
employs four electrodes (TP9, AF7, AF8, and 
TP10) to monitor brain activity [1], offering a 
practical and accessible tool for mental state. 
 
The nonlinear and non-stationary nature of EEG 
signals, which frequently results in variability in 
performance across various individuals and 
recording conditions, presents significant 
challenges to EEG-based mental state 
classification despite its potential. Many 
research studies have used convolutional neural 
networks (CNNs) for EEG classification; 
however, the majority depend on raw signal 
processing or EEG-to-image conversions [2], 
which may inadequately capture feature-level 
distinctions. 
 
Traditional machine learning approaches, such 
as Support Vector Machines (SVM) and Random 
Forest, have been widely used but often require 
extensive feature engineering to extract 
meaningful representations from EEG signals 
[3]. The efficacy of various machine learning and 
deep learning models was assessed in a study 
conducted by Giri and Radhitya (2024),  a 
classification of emotions from EEG data. The 
results indicated that the Support Vector 
Machine (SVM) and Convolutional Neural 
Network (CNN) models outperformed other 
models, achieving the maximum accuracy of 
0.98 [4].  
 
Deep learning models, particularly CNNs, have 
shown improved classification accuracy by 
automatically extracting features from EEG 
signals. Previous research has shown that deep 

learning models can accurately classify EEG 
signals across a wide range of mental states and 
cognitive tasks, with some utilizing 
spectrogram-based transformations to 
represent EEG signals as images.  Kumari et al. 
offered a CNN model that achieved the 
maximum accuracy of 98.13%, followed by a 
Random Forest model at 98.12% and equivalent 
results from LSTM and GRU models at 97.42% 
and 97.19%, respectively [3]. Craik et al. (2019). 
discovered that CNN, RNN, and DBN 
architectures outperformed simpler MLP and 
SAE models in several EEG classification tasks, 
including emotion detection, motor imagery, 
and mental effort [2].  
 
However, many of these research employ hybrid 
models such as CNN-LSTM [5], [6], [7], [8], [9] or 
CNN-GRU [10], which incorporate recurrent 
layers to capture temporal dependencies to 
improve classification accuracy, as traditional 
machine learning approaches have struggled to 
address these complexities. While hybrid CNN-
RNN models improve classification, they require 
significant computational resources.  
 
Recent developments in deep learning have 
introduced alternative architectures, like 
Transformers [11], [12] and Graph Neural 
Networks (GNNs) [13], [14], for processing EEG 
signals. Transformer-based models sort EEG 
data into classes by using attention processes to 
get and combine different types of information 
from the signals, whereas GNNs are used to 
classify EEG data by modeling the relationships 
between EEG channels as a graph, where nodes 
represent EEG channels and edges represent the 
connections or interactions between them. 
These models generally need large datasets for 
efficient training and are computationally 
intensive, making them less appropriate for 
small-scale EEG research. Considering these 
limitations, CNNs continue to be an appropriate 
choice for EEG classification, particularly where 
computational efficiency is essential. 
 
Another study focused on CNN designs. The 
study combines Common Spatial Pattern (CSP) 
for feature extraction, Fast Fourier Transform 
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Energy Map (FFTEM) for feature selection and a 
simple CNN with a single convolutional layer and 
Fourier feature maps to achieve a 0.61 mean 
kappa value [15], and another by Lawhern 
(2018) used two blocks of convolutional 
network called EEGNet to achieve the range of 
0.79 to 0.91 AUC values [16]. These two pieces 
of research highlight the challenge of improving 
classification performance with basic CNN 
structures.  
 
This research investigates whether statistical 
EEG features can enhance CNN-based 
classification while maintaining computational 
efficiency by directly utilizing statistical EEG 
features instead of raw signals or spectrogram-
based representations. Unlike prior approaches, 
which often incorporate temporal modeling 
through RNNs or require complex 
preprocessing, this research explores the 
feasibility of a simpler CNN-based model that 
classifies EEG data based solely on statistical 
features.  
 
Three main aspects define this research's 
uniqueness: first, it evaluates CNN performance 
using statistical EEG features instead of 
transformed images or raw signals; second, it 
methodically investigates the impact of data 
augmentation on model stability and 
generalization; and third, it offers ideas on the 
possible advantages of hybrid CNN-based 
architectures for future developments.  
 
Electroencephalogram (EEG) data was collected 
from ten subjects using the Muse Headband to 
validate the suggested methodology, which 
captures activity from four electrodes (TP9, AF7, 
AF8, TP10). Participants were chosen based on 
self-reported mental state, aged 20 to 35 years, 

and without a history of neurological problems. 
The dataset originally had 200 samples, which 
was increased to 1000 samples through data 
augmentation methods. This improvement was 
essential to prevent overfitting and improve 
training stability. The research evaluates the 
effectiveness of CNN models trained on both 
actual and augmented data, focusing the impact 
of dataset size on classification performance. 
 
This research enhances the understanding of 
CNN-based EEG classification by addressing 
these gaps, particularly in the use of statistical 
EEG features. The results provide useful insights 
into optimizing CNN architectures for EEG 
classification while highlighting the significance 
of dataset augmentation in improving model 
stability and generalization. Future research 
may investigate hybrid models to improve 
classification accuracy by capturing temporal 
dependencies in EEG signals. 
 
2. RESEARCH METHOD 
2.1 EEG Data Acquisition and 
Preprocessing 
Data acquisition was conducted using the Muse 
Headband, which includes four electrodes (TP9, 
AF7, AF8, TP10) placed on the frontal and 
temporal lobes, as shown in Figure 1. The Muse 
EEG Headband captured EEG data from 10 
participants, ranging in age from 20 to 35 (5 
males and 5 females). A total of 200 samples 
were obtained from each participant's 60-
second sessions of two mental state tasks: 
relaxed and concentrated. To preserve 
important brain activity, the unprocessed EEG 
signals were preprocessed to eliminate artifacts 
using a bandpass filter (1-50 Hz) and recorded at 
a sampling rate of 256 Hz.

 

 
Figure 1. Muse Headband's TP9, AF7, AF8, and TP10 sensors on the international standard EEG layout system [1] 
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The EEG signals were recorded using the open-
source BlueMuse application [17] and stored as 
raw time-series data. The data was collected in 
a controlled environment with minimal external 
disturbances, and participants were asked to 
perform specific exercises to induce either a 
concentration state (e.g., reading news articles 
or attending online classes) or a relaxation state 
(e.g., deep breathing exercises with eyes 
closed). 
Statistical features were directly extracted from 
the time and frequency domains rather than 
converting EEG signals into images. For each of 
the four electrode channels (TP9, AF7, AF8, 
TP10), these characteristics are as follows: 
mean, standard deviation, skewness, kurtosis, 
power spectral density (PSD), and zero-crossing 
rate (ZCR). Furthermore, statistical features 
based on the Fast Fourier Transform (FFT) were 
calculated to capture frequency-domain 
characteristics [18]. 
 
2.2 EEG Data Augmentation and 
Normalization 
As part of the data augmentation process, three 
primary techniques were employed to enhance 
generalization and resolve the limited dataset 
size: Additive Gaussian Noise, Feature Scaling, 
and Sample Mixing.  
a. Additive Gaussian Noise: To replicate real-

world variability while maintaining the 
underlying signal structure, statistical EEG 
features were supplemented with random 
noise with a small variance (0.01). 

b. Feature Scaling: To incorporate controlled 
variations in amplitude while maintaining 
relative feature distributions, each feature 
was scaled using a random factor within a 
predefined range (0.8 to 1.2). 

c. Sample Mixing: Synthetic samples were 
produced by combining two randomly 
selected EEG feature vectors with a 
weighted ratio 0.5. This method generated 
new, realistic samples while maintaining 
essential statistical properties. 

 
These augmentation strategies increased the 
dataset from 200 to 1000 samples. 
Subsequently, the augmented data were 

normalized using Robust Scaler, which scales 
features based on the median and interquartile 
range [19], rendering it more resilient to outliers 
than min-max scaling. 
 
2.3 CNN Model for Classification 
The CNN model was implemented using 
TensorFlow and Keras. Figure 2 presents the 
model architecture diagram, providing a clearer 
understanding of its structure. The CNN model 
consists of an input layer, two convolutional 
layers with ReLU activation, and max-pooling 
layers for feature extraction. The first Conv1D 
layer applies numbers filters with a kernel size of 
3, followed by a max-pooling layer with a pool 
size of 2. The second Conv1D layer doubles the 
filters from the first layer while maintaining the 
same kernel size, followed by another max-
pooling layer. After convolutional blocks, the 
output is flattened and passed through a fully 
connected Dense layer with 64 units and ReLU 
activation. A dropout layer with a rate of 0.5 is 
added to prevent overfitting before the final 
Dense output layer. This layer uses a softmax 
activation function to categorize mental states 
into two classes. The model was trained using 
the Adam optimizer and sparse categorical 
cross-entropy loss. 
 
2.4 Hyperparameter Tuning and Model 
Training 
Manual Hyperparameter Tuning was conducted 
by testing different configurations of 
convolutional units (32, 64, 128), learning rates 
(0.001, 0.005, 0.01), and epochs (60, 75, 90). The 
dataset was split into 80% training and 20% 
validation. Each combination was tested on 
actual data (200 samples) and augmented and 
normalized data (1000 samples) to determine 
the best-performing configuration.  
 
Following the hyperparameter tuning phase, the 
model is trained using the optimal set of 
hyperparameters. Training stability was 
analyzed using learning curves to assess 
fluctuations in accuracy and loss over epochs. 
The dataset was split into 80% training and 20% 
validation, and training was conducted using a 
mini-batch size of 32.
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Figure 2. Initial Model Architecture Diagram 
 

 2.5 Model Evaluation 
The trained CNN model was evaluated using 
precision, recall, F1-score, and accuracy. 
Precision assesses the accuracy of positive 
predictions, whereas recall evaluates the 
model's ability to identify all instances of each 
class. The F1-score is the harmonic mean of 
precision and recall, providing a balanced 
performance assessment[18].  
 
A confusion matrix visually represents true 
positives, true negatives, false positives, and 
false negatives. It was also used to analyze 
classification performance across the two 
classes. To further investigate training stability, 
learning curves were plotted to visualize 
fluctuations in accuracy and loss over epochs. 
 
Performance was also compared between 
models trained on the actual dataset (200 
samples) and the augmented dataset (1000 
samples). Additional comparisons were made 
with the use of GRU in statistical EEG Data [20]. 
 

3. RESULTS AND DISCUSSIONS 
3.1 EEG Data Acquisition and 
Preprocessing Results 
The Muse EEG Headband was employed to 
record the EEG signals of all 10 participants 
properly. Figure 3 provides sample EEG 
waveforms for both mental states 
(concentration and relaxation), visually 
representing the unprocessed dataset. The raw 
signals were then processed with bandpass 
filtering (1-50 Hz) and artifact removal to 
maintain important brain activity and minimize 
noise.  
 
Each EEG sample yielded a total of 76 statistical 
features, including time-domain features 
(mean, standard deviation, skewness, kurtosis, 
median, minimum, maximum, peak-to-peak 
amplitude, mean absolute deviation, power 
spectral density, zero-crossing rate, and root 
mean square) and frequency-domain features 
(FFT mean, FFT standard deviation, FFT 
skewness, FFT kurtosis, FFT minimum, FFT 
maximum, and FFT peak-to-peak amplitude) for 
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each of the four electrodes (TP9, AF7, AF8, 
TP10). These features capture various signal 
characteristics, ensuring an exhaustive 
representation of EEG patterns. Subsequently, 

the extracted features were employed as input 
for CNN-based classification. 
 

 
 

 
Concentration AF7 

 
Relaxation AF7 

 
Concentration AF8 

 
Relaxation AF8 

 
Concentration TP9 

 
Relaxation TP9 

 
Concentration TP10 

 
Relaxation TP10 

 
Figure 3. EEG Raw Signal Samples for Concentration and Relaxation States 

 
Boxplots were created using the real dataset to 
assess extracted features. These boxplots, as 
shown in Figure 4, show EEG feature distribution 
across samples. Mean absolute deviation, 
kurtosis, and peak-to-peak amplitude have a 
broad interquartile range (IQR), indicating 
considerable EEG signal variability, while others 
have a shorter IQR, indicating better stability. 
Outliers in mean absolute deviation, kurtosis, 
and peak-to-peak amplitude may indicate brain 
activity variations or data noise. Skewness 
indicates long-tailed distributions, while 
symmetric distributions have a center median.  
 
Features with a lot of variation may add noise, 
and features whose distributions meet may 
make classification less accurate.  Adding more 
data to the dataset can help get a more accurate 
picture of how the EEG patterns are distributed, 
which can help fix these problems.  Normalizing 
the extracted features also makes sure that all 
of them add equally to the learning process. This 

stops dominant features from making the model 
less accurate.  
 
3.2 EEG Data Augmentation and 
Normalization Results 
Applying augmentation techniques significantly 
increased the dataset size from 200 to 1000 
samples to improve model generalization. 
Additive Gaussian noise introduced small 
variations to mimic real-world EEG fluctuations. 
Feature scaling adjusted amplitudes within a 
controlled range to account for signal intensity 
variations across participants. Sample mixing 
created new synthetic samples by blending real 
EEG feature vectors, preserving underlying 
statistical relationships. 
 
Normalization using Robust Scaler has also been 
implemented. This ensures consistent feature 
distributions leading to more stable training.  
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Figure 4. Sample Boxplots of Real Data 

 
In Figure 5, the boxplots show how the 
normalized features are spread out.  There are 
big changes in feature consistency between 
these plots and those from the original dataset.  
In the original dataset, features like mean 
absolute deviation, kurtosis, and peak-to-peak 
amplitude had various interquartile range and 
outliers.  
 
The augmentation and normalization method 
centers the feature distributions, which makes it 
easier to compare EEG recordings that were 
recorded at different times. This transformation 

makes sure that all features add equally to 
classification. 
 
It's interesting that the augmentation 
normalization process has found more outliers 
in certain features while also making them more 
consistent. This might be because of the 
rescaling and augmenting effect, which makes 
variations that were not so noticeable before 
stand out more. The fact that there are more 
outliers indicates that normalization makes 
extreme values easier to see.  
 

 

 
Figure 5. Sample Boxlplots of Augmented and Normalized Data 

 
3.3 CNN Model Implementation 
The model developed in the research 
methodology has been successfully 
implemented to classify statistical EEG data into 
two mental states: concentration and 
relaxation. The CNN model was implemented 
using TensorFlow and Keras, following a 
structured architecture. The model consists of 
two Conv1D layers with ReLU activation, 
followed by max-pooling for dimensionality 
reduction. A Flatten layer transforms extracted 

features into a dense representation, which is 
then processed by a fully connected Dense layer 
with 64 units and a Dropout layer (0.5) to 
prevent overfitting. Finally, a softmax output 
layer classifies mental states into two 
categories. The model was compiled using the 
Adam optimizer and trained using sparse 
categorical cross-entropy loss.   
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3.4 Hyperparameter Tuning and Model 
Training Results 
The CNN model went through to an exhaustive 
hyperparameter tuning process in order to 
identify the optimal configuration in this 
research. The learning rate, the number of 
epochs for training, and the number of units in 
convolutional layers were all adjusted. The most 
effective model configuration was determined 
through systematic experimentation, utilizing 
an augmented and normalized dataset of 1000 
samples. The optimal hyperparameters were 32 
CNN units in first convolutional layer, 64 in the 
second convolutional layer, a learning rate of 
0.01, and 90 training epochs.  
 
The results of the model training show the 
substantial differences between the use of 
actual data and augmented data. The model 

demonstrated instability when trained on a 
smaller actual dataset (200 samples), as 
evidenced by the fluctuating validation 
accuracy, which suggests poor generalization. 
The model was unable to achieve the optimal 
validation accuracy, despite the convergence of 
training and validation loss. 
 
The training and validation loss and accuracy 
plots for the actual (real) dataset of 200 
samples, which are shown in Figure 6, showing 
apparent signs of instability. The validation 
accuracy fluctuates considerably, whereas the 
training accuracy increases over epochs, 
suggesting that the model experiences difficulty 
generalizing to unseen data. This implies that 
the dataset is insufficiently diverse to enable 
effective learning, resulting in a significant 
amount of performance variance. 

 
Figure 6. Training and Validation Accuracy and Loss for Real Data (200 Samples) 

 
In contrast, the training and validation accuracy 
curves were more consistent as a result of 
training on the augmented and normalized 
dataset (1000 samples), which is shown in Figure 
7. The model consistently exhibited high 
validation accuracy, having smoother accuracy 
trends. The augmented dataset produced a 
rapid convergence of the loss values when 
examining the training and validation loss. The 
model was learning effectively, as evidenced by 
the consistently low validation loss and the rapid 
decrease in the training loss. These findings 
suggest that the model's capacity to extract 
meaningful features was improved by data 

augmentation and normalization, which also 
ensured greater generalization across unseen 
data and improved robustness against noise. 
 
It is obvious from the comparison of these 
training results that data preprocessing, 
particularly augmentation and normalization, is 
essential for CNN performance. The model was 
able to learn more effectively, which in turn 
improved reliability and stability, due to the 
larger, well-prepared dataset. The 
accompanying training and validation accuracy 
plots further substantiate these findings, 
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demonstrating the benefits of a more 
comprehensive dataset. 

 

 

 
 

Figure 7. Training and Validation Accuracy and Loss for Augmented and Normalized Data (1000 Samples) 
 

3.5 Model Evaluation Results 
The evaluation of the model was conducted 
using confusion matrices and classification 
reports, providing a comparative analysis of the 
model's performance on the actual and 
augmented datasets. The assessment focuses 
on accuracy, precision, recall, and F1-score to 
determine the impact of data augmentation on 
classification performance. The evaluation was 
done with the actual data and augmented data. 

 
Using the actual data, the model correctly 
classified 18 instances of the relaxed state, as 
seen in the confusion matrix in Figure 8. 
However, it misclassified 2 instances as 
concentrated.  The model correctly identified 8 
Instances in the concentrated state, but it 
incorrectly classified 12 as relaxed.    
 

 

Figure 8. Confusion Matrix of Model Evaluation Using Actual Data 
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Figure 9. Classification Report of Model Evaluation Using Actual Data

 
This suggests a substantial imbalance in the 
model's capacity to differentiate between the 
two states, with the concentrated state being 
particularly difficult to distinguish.  This 
observation is further substantiated by the 
classification report shown in Figure 9, which 
indicates an accuracy of 65%.  The model is 
unable to accurately identify the majority of 
concentrated states, as the recall for the 
concentrated state is only 40%.  This implies that 
either the model is having difficulty learning its 
distinguishing features or that the dataset may 
not contain enough variation in the 
concentrated state.  
 
[20]On the other hand, the augmented dataset 
showed a significant improvement.  The model 

now accurately classifies 99 instances of relaxed 
and only misclassifies one.  Similarly, the 
concentrated state has 97 instances that are 
accurately identified, with only three 
misclassified as shown in confusion matrix in 
Figure 10.   
 
The classification report shown in Figure 11 
demonstrates this enhanced performance, with 
an overall accuracy of 98%.  The model's 
capacity to generalize has been considerably 
improved by data augmentation, as evidenced 
by the near-perfect precision, recall, and F1-
scores of both classes. 
 

 

 
Figure 10. Confusion Matrix of Model Evaluation Using Augmented and Normalized Data 

 

 
Figure 11. Classification Report of Model Evaluation Using Augmented and Normalized Data 
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The improvements observed in classification 
performance can be linked to the approaches 
taken during the research. The preprocessing 
approaches, including as feature extraction, 
and data augmentation, were essential in 
enhancing the input data for improved learning. 
The feature extraction phase, which entailed 
calculating statistical features from both original 
and FFT-transformed data, guaranteed that the 
model had access to significant information. The 
limited dataset resulted in an unstable model, 
constraining the model's generalization 
capabilities. 

 
The implementation of data augmentation 
addressed this problem by expanding the 
sample size and introducing variability, enabling 
the model to acquire more stable 
representations. 
 
In order to put the suggested CNN model's 
performance in context, it was compared to 
other EEG classification methods, as shown in 
Table 1. 
 

Table 1. Result Comparison with Other Research 
Researcb Method Dataset Accuracy 

This Research CNN (Statistical Features + 
Augmentation) 

1000 samples (Muse 
EEG) 

98% 

Lawhern et al. 
(2018) 

EEGNet (Compact CNN) Multiple BCI dataset 0.79-0.91 
(AUC) 

Abbas & Khan 
(2018) 

CNN with FFT Energy Maps BCI Competition IV 0.61 (Kappa) 

Giri & Radhitya 
(2024) 

CNN, LSTM, GRU (Emotion 
Classification) 

Feeling Emotions EEG 98% (CNN), 
82% (LSTM), 
97% (GRU) 

Giri, et al., (2025) GRU with Statistical Features 400 samples (Muse 
EEG) 

95% 

 
This comparison demonstrates that our CNN-
based methodology, employing statistical 
features and data augmentation, attains 
accuracy that is either comparable to or exceeds 
that of other models. Specifically, our model 
surpasses EEGNet [16] and CNN-FFTEM [15], 
which utilized alternative feature extraction 
methods. Moreover, our results align with the 
emotion classification models proposed by 
[4][4], indicating the efficacy of statistical EEG 
features across diverse EEG classification tasks.  
Additionally, our GRU model in the previous 
research [20], despite achieving marginally 
lower accuracy than the CNN, illustrates the 
potential of recurrent architectures in EEG 
classification. The findings support the 
hypothesis that data augmentation significantly 
enhances model performance and stability.  
 
Although proposed CNN model demonstrated 
high accuracy, there are some limitations 
remain in this research; CNNs do not completely 
understand how EEG data is linked in a 
sequential way.  To improve temporal feature 
learning, more research should look into CNN-
GRU or Transformer-based methods in the 
future. The dataset size was artificially increased 

via augmentation. Future studies should include 
a bigger, more diverse participant group to 
validate results, and while Transformers and 
other hybrid methods were mentioned as a 
potential alternative, they were not directly 
tested in this research. 
 
4. CONCLUSION 
This research examined into how Convolutional 
Neural Networks (CNNs) can be used to classify 
mental states based on EEG data using statistical 
features. Unlike earlier methods that used raw 
EEG signals or image-based transformations, our 
method directly used statistical features from 
EEG signals and used data augmentation to 
make the model more stable and useful in other 
situations. The results show that a CNN trained 
on statistical features and improve with 
augmentation got 98% accuracy, doing better 
than several modern methods, such as EEGNet 
and FFT-based CNN models. 
 
Furthermore, our results show that statistical 
feature representation is a good alternative to 
more complicated EEG processing methods, 
providing a low cost and effective way to classify 
EEG signals. Compared to other deep learning 
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architectures, like GRUs and hybrid CNN-RNN 
models, CNNs seem to be very good at 
classifying objects, especially when they are 
joined with a lot of extra data. 
 
Even though these results look good, there are 
still a few challenges. First, the CNN model 
doesn't have any temporal modeling tools. This 
problem could be fixed by adding recurrent 
architectures like GRUs or Transformer-based 
models. Second, this study only used a small EEG 
dataset. While augmentation made the results 
more general, these results should be confirmed 
in future studies using bigger, more diverse EEG 
datasets. Lastly, more research into advanced 
deep learning methods such as attention 
mechanisms and hybrid models could make EEG 
classification even more accurate and reliable.  
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