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Abstract 
Distributed Denial of Service (DDoS) attacks continue to pose significant challenges to cybersecurity 
infrastructure by overwhelming servers with massive traffic, rendering them inaccessible. Machine 
learning (ML) has become a critical tool for detecting such attacks efficiently. This study aims to enhance 
DDoS detection by applying and comparing three feature selection methods—Recursive Feature 
Elimination (RFE), Principal Component Analysis (PCA), and Information Gain (IG)—in conjunction with 
four ensemble-based classification algorithms: Random Forest (RF), LightGBM, XGBoost, and AdaBoost. 
The CIC-DDoS2019 dataset is utilized due to its diversity and representation of modern DDoS scenarios. 
The proposed approach evaluates each combination of feature selection and classification models based 
on accuracy, precision, recall, and F1-score. Furthermore, we incorporate k-fold cross-validation to ensure 
model robustness and assess computational efficiency during training and inference stages. The 
experimental results demonstrate that the combination of RFE with LightGBM yields superior performance 
across all evaluation metrics while maintaining low resource utilization. The novelty of this work lies in its 
systematic comparison of feature selection methods under hardware-aware constraints and its 
contribution to guiding efficient ML-based DDoS mitigation strategies. This study bridges the gap between 
detection accuracy and system efficiency, making it suitable for deployment in constrained environments 
such as edge devices or cloud-based intrusion detection systems.  
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1. INTRODUCTION 
The advancement of modern computing 
technology and global internet infrastructure 
has transformed human activities—social, 
business, and work—into increasingly online 
interactions. However, this progress has also 
given rise to various cyber threats, notably 
Distributed Denial of Service (DDoS) attacks. 
DDoS as one of the most severe threats, aiming 
to disrupt services by overwhelming targeted 
systems [1]. 

 
Picture 1. DDoS Traffic Intensity from 2002 to 

2018 [2]. 
 
Picture 1, data from Akamai Inc. shows a steady 
increase in DDoS traffic intensity from 2002 to 
2018, peaking at 1,350 Gbps. These attacks are 
often launched using botnets controlled by 
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malware, making real-time detection and 
mitigation highly challenging [3]. 
 
Marvi et al. (2021) demonstrated that reducing 
features by 77% using an Integrated Feature 
Selection (IFS) method improved classification 
performance by approximately 20% using 
LightGBM [8]. Omuya et al. (2021) applied PCA 
and Information Gain to reduce training time 
and enhance accuracy [9], while Upadhyay et al. 
(2021) found that combining Recursive Feature 
Elimination with XGBoost (RFE-XGBoost) led to 
higher accuracy and reduced misclassification 
[10]. 
 
Prior studies have employed a variety of ML 
algorithms for DDoS detection, including 
decision trees, support vector machines (SVM), 
and ensemble methods such as Random Forest 
(RF) and AdaBoost. Moreover, recent advances 
have explored deep learning architectures such 
as Convolutional Neural Networks (CNN), 
Recurrent Neural Networks (RNN), and 
transformer-based models, which offer high 
detection accuracy by capturing temporal and 
spatial patterns in traffic data. Federated 
learning and stream-based intrusion detection 
systems (IDS) have also emerged, aiming to 
address privacy concerns and real-time 
processing requirements, respectively. 
 
Despite these advancements, there is still a 
practical need to optimize detection 
performance while minimizing computational 
resource consumption, especially for 
deployment in resource-constrained 
environments such as edge computing or IoT 
networks. Deep learning models, while 
accurate, are often computationally intensive 
and less interpretable, making them less 
feasible for real-time or low-power scenarios. 
 
To address these challenges, this study 
investigates the impact of feature selection 
techniques on the performance of ensemble-
based machine learning classifiers for DDoS 
detection. Feature selection reduces data 
dimensionality by identifying the most relevant 
features, thereby improving model efficiency 
and interpretability. We evaluate three widely 
used feature selection techniques: Recursive 
Feature Elimination (RFE), Principal Component 
Analysis (PCA), and Information Gain (IG). These 
are combined with four ensemble learning 
models—Random Forest (RF), XGBoost, 

AdaBoost, and LightGBM—to assess their 
effectiveness in identifying DDoS attacks. 
 
While existing literature has explored ML-based 
detection using individual feature selection 
techniques or classifiers, few studies have 
provided a comprehensive comparative analysis 
across multiple combinations under consistent 
evaluation settings. Furthermore, prior works 
rarely emphasize hardware-aware model 
efficiency, which is critical for deployment in 
constrained environments.[9]. 
 
2. RESEARCH METHOD  
Various studies have explored the application of 
machine learning techniques for DDoS attack 
detection, emphasizing both classification 
accuracy and computational efficiency. 
Traditional models such as Decision Trees, Naïve 
Bayes, and Support Vector Machines (SVM) 
have demonstrated reasonable detection 
capabilities but often struggle with scalability 
and performance in high-dimensional data 
scenarios [1][2]. 
 
Ensemble learning algorithms, including 
Random Forest (RF), AdaBoost, and XGBoost, 
have gained popularity due to their ability to 
combine multiple weak learners to achieve 
higher accuracy and robustness. For instance, 
Roy et al. [3] applied Random Forest on the NSL-
KDD dataset and reported improved 
performance over single classifiers. Similarly, 
Ahmed et al. [4] used XGBoost for classifying 
attack traffic and observed its superiority in 
handling imbalanced datasets. 
 
Recent research has focused on integrating 
feature selection techniques with classification 
models to enhance performance. Recursive 
Feature Elimination (RFE) was used by Kumar et 
al. [5] to eliminate redundant features and 
improve model interpretability. Principal 
Component Analysis (PCA), a dimensionality 
reduction method, has been widely employed to 
reduce feature space and mitigate overfitting 
[6]. Information Gain (IG) has also been used to 
rank features based on their relevance to the 
target class [7]. 
 
However, most prior works investigate a single 
feature selection method in isolation, without 
conducting comprehensive comparisons across 
multiple selection strategies. Moreover, the 
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interaction effects between different feature 
selection methods and ensemble classifiers are 
rarely explored in a unified experimental 
setting. 
 
In parallel, state-of-the-art deep learning 
techniques such as Convolutional Neural 
Networks (CNN), Recurrent Neural Networks 
(RNN), and transformer-based models have 
been proposed to enhance detection accuracy. 
For example, Zhang et al. [8] used a CNN-RNN 
hybrid architecture to capture both spatial and 
temporal dependencies in traffic flow. 
Transformer-based models have shown promise 
in understanding complex feature relationships 
[9], while federated learning frameworks allow 
distributed model training across edge devices 
without exposing sensitive data [10]. Stream-
based Intrusion Detection Systems (IDS) have 
also emerged to enable real-time threat 
detection on live traffic [11]. 
 
Despite their advantages, deep learning models 
typically require high computational resources, 
making them less feasible for resource-
constrained environments such as IoT networks 
or embedded systems. In contrast, traditional 
ensemble classifiers with well-optimized feature 
selection offer a practical balance between 
accuracy and efficiency. 
 
While Upadhyay et al. [12] and Barkah et al. [13] 
have attempted to combine feature selection 
with ensemble models, their studies often focus 
on performance metrics alone without 
considering resource utilization or 
reproducibility under varying conditions. 
Additionally, none provide detailed 
comparisons across multiple combinations of 
feature selection and classification techniques 
using a consistent framework. 
 
2.1  Sampling/Selection Method 
The sample used in this study is data from the 
CIC-DDoS2019 dataset. Sampling is done 
randomly to ensure a representative sample of 
DDoS attacks. The data is generally stored in 
user-friendly formats such as CSV and includes 
various features such as source and destination 
IP addresses, ports, number of bytes and 
packets transferred, as well as protocol 
information [6]. Further details on the class 
types and traffic volume for each DDoS attack 
category in the CIC-DDoS2019 dataset are 

presented in Table 1, titled “Class DDoS in the 
CIC-DDoS2019 Dataset.” 

Table 2: Class DDoS in the CIC-DDoS2019 
Dataset [6]. 

Class Traffic 
Benign 56,863 
DDoS_NetBIOS 4,093,279 
DDoS_SNMP 5,159,870 
DDoS_NTP 1,202,642 
DDoS_TFTP 20,082,580 
DDoS_SSDP 2,610,611 
DDoS_SYN 1,582,289 
DDoS_UDP-Lag 366,461 
DDoS_DNS 5,071,011 
DDoS_MSSQL 4,522,492 
DDoS_LDAP 2,179,930 
DDoS_UDP 3,134,645 
DDoS_WebDDoS 439 

 
The data will be divided into four groups: using 
raw data, processed data with RFE feature 
selection, PCA feature selection, and IG feature 
selection. 
Dataset: CIC-DDoS2019 
A. Data Source: Developed by the Canadian 

Institute for Cybersecurity specifically for 
DDoS attack detection research. 

B. Data Characteristics: Includes normal 
network traffic and various types of DDoS 
attacks, stored in accessible formats such as 
CSV. 

C. Evaluation and Comparison: 
a. Models (Random Forest, XGBoost, 

AdaBoost, and LGBM) will be trained 
and evaluated on the four types of 
datasets (raw, RFE, PCA, IG). 

b. Model effectiveness will be assessed 
based on metrics such as accuracy, 
precision, recall, and F1-score. 

c. Comparisons will assess the impact of 
feature selection on model 
performance and hardware 
requirements for DDoS attack 
detection. 

D. Objective: 
a. Identify the most effective model and 

feature selection approach for DDoS 
attack detection. 

b. Enhance understanding of the 
performance and effectiveness of 
specific ML techniques in the context of 
cybersecurity. 
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c. Provide practical contributions to more 
efficient and effective information 
security practices. 
 

2.2  Ensemble Classification Methods: 
Random Forest, XGBoost, AdaBoost, and 
LGBM 
Theoretical Background and Model Operation 
 
1. Random Forest 

Random Forest is an ensemble of decision 
trees trained on different data subsets and 
averaged to improve predictive accuracy. 
Each node selects a random set of features 
to compute results, and the aggregated 
outputs of all trees form the final 
classification [6].  

2. XGBoost 
Ussatova et al. (2022) describe XGBoost as 
a high-performance machine learning 
algorithm introduced in 2014, featuring 
parallel tree boosting and optimized 
efficiency. One of its key features is the 
iterative boosting process, yielding superior 
classification performance over other 
algorithms [1]. 

3. AdaBoost 
AdaBoost is an ensemble technique that 
builds a strong classifier by combining 
multiple weak learners. It works in a 
sequential manner, where misclassified 
instances from previous models are 
emphasized in subsequent iterations. This 
process continues until a collection of base 
learners cooperatively achieve high 
classification accuracy [6]. 

4. LGBM 
Light Gradient Boosting Machine (LGBM) is 
a tree-based gradient boosting framework 
known for its efficiency and accuracy, 
particularly on large-scale datasets. LGBM is 
widely used for predictive modeling and 
classification tasks, makes it suitable for 
DDoS attack detection [8]. 

Given the unique characteristics of the CIC-
DDoS2019 dataset and the challenges in DDoS 
attack detection, evaluating these ensemble 
models—Random Forest, XGBoost, AdaBoost, 
and LGBM—provides insights into their optimal 
application. This evaluation enables researchers 
to identify the most appropriate model by 
leveraging each algorithm’s strengths while 
mitigating their limitations. 
 

2.3  Influence of Feature Selection 
Feature Selection Methods 
Feature selection is a key process in machine 
learning that involves removing irrelevant or 
redundant attributes to enhance model 
performance. According to Omuya et al. (2021), 
eliminating unnecessary features improves the 
efficiency and accuracy of learning algorithms 
[9]. As Chandrashekar notes in the same study, 
selecting an optimal subset of features is crucial 
since these features serve as the core 
information source for building classification 
models [9]. 
This study compares three feature selection 
techniques—Recursive Feature Elimination 
(RFE), Principal Component Analysis (PCA), and 
Information Gain (IG)—to reduce data 
dimensionality and enhance classification 
performance by identifying the most relevant 
features. The architecture of the selection 
process is illustrated in Picture 2 (Feature 
Selection Flowchart). 

 
Picture 2. Feature Selection Flowchart. 

 
The applied methods are summarized below: 
a) Recursive Feature Elimination (RFE) 

RFE iteratively eliminates less important 
features based on importance scores from 
trained models, identifying the most stable 
and predictive features for optimal model 
performance [10]. 

b) Information Gain (IG) 
IG evaluates feature relevance by 
measuring the reduction in entropy, helping 
select features that improve classification 
accuracy while keeping computational costs 
low [9]. 

c) Principal Component Analysis (PCA) 
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PCA is unsupervised linear method used for 
dimensionality reduction. It transforms the 
data into a lower-dimensional space while 
preserving as much statistical variance as 
possible, often selecting features most 
correlated with the principal components 
[7]. 

By reducing the number of features, these 
methods help minimize overfitting and improve 
the speed and efficiency of data processing. 
Effective feature selection is essential for 
developing accurate machine learning models 
for DDoS attack detection. 
 
2.4 Analysis Technique, Model Design, and 
Testing Strategy 
This study evaluates the performance of feature 
selection techniques—RFE, PCA, and 
Information Gain—combined with ensemble 
machine learning classifiers (Random Forest, 
XGBoost, AdaBoost, and LightGBM) using the 
CIC-DDoS2019 dataset. The analysis focuses on 
accuracy, processing time, and resource 
efficiency for DDoS detection. 
 
Validating feature selection and ensemble 
methods requires multiple performance metrics 
such as precision, recall, F1-score, and failure 
rate. Experiments are conducted in a controlled 
environment to assess model performance 
under varying conditions [10]. The overall 
process is illustrated in Picture 3, outlining the 
research workflow. 
 

 
Picture 3. Research workflow 

 

2.5 Research Step 
The research methodology, as visualized in 
Picture 3, consists of the following steps: 
A. Data Collection and Preparation: 
The CIC-DDoS2019 dataset is collected and 
preprocessed (including cleaning, handling 
missing values, and normalization). Four 
datasets are prepared: the raw dataset and 
three with features reduced via RFE, PCA, and 
Information Gain. 
B. Model Training & Validation : 
`n_estimators`: number of trees (range: 50 to 
200) 
`learning_rate`: boosting rate (range: 0.01 to 
0.3) 
`max_depth`: depth of each tree (range: 3 to 10) 
Other model-specific parameters as applicable. 
C. Model Implementation: 
Ensemble classifiers—Random Forest, XGBoost, 
AdaBoost, and LightGBM—are implemented 
using appropriate libraries, with tuning of 
hyperparameters to optimize performance. 
D. Performance Evaluation: 
Accuracy: Overall correctness of predictions. 
Precision : The ratio of true positives to 
predicted positives. 
Recall : The ratio of true positives to actual 
positives. 
F1-Score: Harmonic mean of precision and 
recall. 
E. Experimental Environment  
All experiments are conducted on a machine 
with the following specifications: 
CPU: Intel Core i7-9750H @ 2.60GHz 
RAM: 16 GB 
OS: Ubuntu 20.04 LTS 
Libraries: Scikit-learn 1.2.2, LightGBM 3.3.2, 
XGBoost 1.7.5 
 
3. RESULT AND DISCUSSION 
3.1 Data Preparation 
The CIC-DDoS2019 dataset was retrieved from 
the official repository of the Canadian Institute 
for Cybersecurity. It was selected due to its 
comprehensive coverage of various DDoS attack 
types alongside normal traffic, making it suitable 
for DDoS detection research. CIC-DDoS2019 
consists of 83 features detailing network traffic 
attributes such as source/destination IPs, ports, 
protocols, packet sizes, and other traffic metrics. 
Descriptive statistics and data visualizations, 
such as heatmaps, were used to identify 
patterns and feature correlations, supporting 
informed preprocessing and feature selection. 
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Picture 4 illustrates a heatmap of numerical 
feature correlations for the DDoS MSSQL subset. 

 
Picture 4. Heatmap Numerical Data DdoS 

MSSQL 
 
3.2 Data Quality Assessment 
Ensuring data quality is a critical step in 
preprocessing to enhance model performance. 
This stage includes identifying and handling 
missing values, outliers, and performing data 
normalization. 
Missing Values: Missing entries were detected 
and addressed using techniques such as 
row/column removal. 
Outliers: Outliers, which may distort model 
performance, were identified through statistical 
analysis and visual tools like box plots. 
Normalization: To bring all features onto a 
comparable scale—essential for many machine 
learning algorithms—data normalization was 
applied using Min-Max Scaling or Z-score 
normalization. 
These preprocessing steps ensured a clean and 
consistent dataset for model training, thereby 
improving the reliability and accuracy of DDoS 
detection. Picture 5 presents the Python code 
used for handling missing values, outlier 
removal, and normalization, applied across all 
tested DDoS datasets prior to feature selection 
and classification. 

 
Picture 5. Python code used for handling 

missing values, outlier removal, and 
normalization 

 
3.3 Modeling 
This study employs ensemble machine learning 
techniques—Random Forest, XGBoost, 
AdaBoost, and LightGBM—selected for their 
ability to enhance model accuracy and stability 
by aggregating multiple base learners. These 
algorithms are known for strong performance in 
classification tasks, including DDoS attack 
detection. 
A. Test Case and Model Development 
The dataset was split into 70% training and 30% 
testing subsets. For each feature selection 
method (RFE, PCA, IG) and the raw dataset, 
models were trained and evaluated. The process 
includes: 
Data Preparation: Train-test split. 
Feature Selection: Applying RFE, PCA, and IG. 
Model Training: Using both selected and original 
features. 
Model Testing: Performance evaluation on test 
data. 
B. Feature Selection Implementation 
Feature selection was applied to five DDoS 
datasets: DNS, MSSQL, LDAP, UDP, and NTP. 
Methods included Recursive Feature 
Elimination (RFE), Principal Component Analysis 
(PCA), and Information Gain (IG), aiming to 
reduce computational load and improve model 
efficiency. Each method produced new datasets 
tailored to the selected features. 
Recursive Feature Elimination 
The RFE process begins by loading cleaned 
datasets in chunks. Mutual information is 
calculated for each feature to assess relevance 
to the classification target. Scores from all 
chunks are aggregated, and a threshold is 
applied to retain only the most informative 
features. Selected features are visualized using 
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a horizontal bar chart to support interpretation, 
as illustrated in Picture 6.S 

 
Picture 6. Feature Importance Plot Recursive 

Feature Elemination 
Principal Component Analysis (PCA) 
The PCA-based feature selection process begins 
with dataset loading and preprocessing. A scree 
plot is used to determine the number of 
components required to explain at least 90% of 
the variance. PCA is then re-applied with the 
selected components, and the contribution of 
each original feature to the principal 
components is calculated. 
Features are ranked based on their 
contributions to identify the most important 
ones. The aggregated contributions are 
visualized in a bar chart, as shown in Picture 7. 

 
Picture 7. Feature Importance Plot Principal 

Component Analysis 
Information Gain 
The feature selection process using Information 
Gain starts with loading the cleaned dataset in 
chunks. Mutual information is calculated for 
each feature to assess its relevance to the 
target. Scores from all chunks are aggregated, 
and a threshold is applied to select the most 
relevant features. These selected features are 
then visualized using a horizontal bar chart for 
further analysis, as illustrated in Picture 8. 

 
Picture 8. Feature Importance Plot Information 

Gain 
3.3 Ensemble Machine Learning Algorithm 
Implementation 
Random Forest 
Implemented using Scikit-learn, with the 
following parameters based on Castillo-Olea et 
al. (2019) [22]: 
n_estimators: 10 
max_depth: 3 
max_features: 'auto' 
XGBoost 
Implemented using the XGBoost library, 
following Kurnia D et al. (2019) [23]: 
n_estimators: 100 
learning_rate: 0.1 
max_depth: 6 
reg_lambda: 1 
AdaBoost 
Implemented with Scikit-learn as per Saifulah H 
et al. (2023) [24]: 
n_estimators: 50 
learning_rate: 1.0 
LGBM 
Implemented using LightGBM based on Kim J et 
al. (2020) [25]: 
n_estimators: 100 
learning_rate: 0.1 
max_depth: -1 (unlimited) 
reg_lambda: 0.1 
3.4 Model Training with Raw and 
Processed Datasets 
Training with Recursive Feature Elemination 
The RFE-processed dataset was trained and 
tested using ensemble classifiers: Random 
Forest, LGBM, XGBoost, and AdaBoost. The 
results are summarized in the following table. 
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A. Random Forest 
Table 3: DDoS Detection Matrix Using Random Forest Classification with RFE 

No 
Type 
of 
DdoS 

Accuracy Precision Recall F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9997 0,9998 0,9997 0,9997 0,0003 0,9999 8,4480 0,20% 1938,32 0,30% 1805,09 
2 LDAP 0,9998 0,9999 0,9998 0,9999 0,0002 1 1,6028 0,10% 1016,72 0,10% 1048,81 
3 MSSQL 0,9998 0,9999 0,9998 0,9998 0,0002 1 3,2956 0,10% 1827,41 0,10% 1684,69 
4 UDP 0,9995 0,9997 0,9995 0,9995 0,0005 0,9999 3,8557 0,50% 1412,13 0,10% 1437,66 
5 NTP 0,9985 0,9987 0,9985 0,9986 0,0015 1 3,8557 0,30% 574,6 0,10% 574,78 

 
B. Light Gradient Boosting Machine 

Table 4: DDoS Detection Matrix Using Light Gradient Boosting Machine Classification with RFE 

No 
Type 
of 
DdoS 

Accuracy Precision Recall 
F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9999 0,9999 0,9999 0,9999 0,0001 1 3,71 0,20% 1679,04 0,20% 1679,23 
2 LDAP 0,9999 0,9999 0,9999 0,9999 0,0001 1 5,66 0,60% 828,58 0,20% 830,44 
3 MSSQL 0,9999 0,9999 0,9999 0,9999 0,0001 1 15,97 0,40% 1547,68 0,10% 1530,05 
4 UDP 0,9999 0,9999 0,9999 0,9999 0,0001 1 3,91 0,30% 1149,06 0,30% 1149,18 
5 NTP 0,9999 0,9999 0,9999 0,9999 0,0001 1 5,12 0,40% 597,22 0,20% 599,98 

 
C. XGBOOST 

Table 5: DDoS Detection Matrix Using XGBoost Classification with RFE 

No 
Type 
of 
DdoS 

Accuracy Precision Recall F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 8,26 0,20% 1457,56 0,30% 1438,84 
2 LDAP 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 2,95 0,20% 852,64 0,30% 852,85 
3 MSSQL 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 9,45 0,50% 852,65 0,30% 852,73 
4 UDP 0,9999 0,9999 0,9998 0,9998 0,0002 1,00 7,19 0,30% 1144,94 0,20% 1145,35 
5 NTP 0,9998 0,9998 0,9998 0,9998 0,0002 1,00 1,82 0,20% 562,82 0,30% 563,00 

 
D. ADABoost 

Table 6: DDoS Detection Matrix Using ADABoost Classification with RFE 

No 
Type 
of 
DdoS 

Accuracy Precision Recall 
F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9998 0,9999 0,9998 0,9998 0,0002 0,999 84,01 0,30% 1728,29 0,10% 1720,74 
2 LDAP 0,9999 0,9999 0,9999 0,9999 0,0001 1,000 44,18 0,20% 868,44 0,20% 868,56 
3 MSSQL 0,9999 0,9999 0,9999 0,9999 0,0001 0,997 95,26 0,30% 1563,5 0,10% 1563,5 
4 UDP 0,9997 0,9998 0,9997 0,9997 0,0003 1,000 72,76 0,30% 1170,04 0,20% 1170,09 
5 NTP 0,9993 0,9993 0,9993 0,9993 0,0007 1,000 26,62 0,10% 567,09 0,20% 567,09 

 
Model Training with PCA 
A. Random Forest 

Table 7: DDoS Detection Matrix Using Random Forest Classification with PCA 

No 
Type 
of 
DdoS 

Accuracy Precision Recall 
F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9951 0,9994 0,9951 0,997 0,0049 0,9943  4,4973  0,10% 2004,15 0,20% 1857,98 
2 LDAP 0,9991 0,9996 0,9991 0,9992 0,0009 1  2,6617  0,20% 1025,35 0,10% 1055,46 
3 MSSQL 0,9989 0,9997 0,9989 0,9992 0,0011 0,9985  4,9557  0,20% 1855,72 0,20% 1727,24 
4 UDP 0,9991 0,9996 0,9991 0,9993 0,0009 0,9999  4,1061  0,10% 1365,99 0,10% 1383,14 
5 NTP 0,9462 0,9894 0,9462 0,964 0,0538 0,9859  1,2723  0,10% 645,17 0,20% 650,83 
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B. Light Gradient Boosting Machine 
Table 8: DDoS Detection Matrix Using Light Gradient Boosting Machine Classification with PCA 

No 
Type 
of 
DdoS 

Accuracy Precision Recall F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9947 0,9994 0,9947 0,9968 0,0053 0,99 10,8 0,30% 1723,77 0,10% 1725,91 
2 LDAP 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 4,2 0,50% 891,43 0,20% 913,25 
3 MSSQL 0,9999 0,9999 0,9999 0,9999 0,0001 0,99 8,1 0,50% 1571,79 0,10% 1572,68 
4 UDP 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 8,9 0,40% 1129,13 0,10% 1129,23 
5 NTP 0,9427 0,9894 0,9427 0,9620 0,0573 0,99 3,3 0,40% 570,77 0,30% 575,80 

 
C. XGBOOST 

Table 9: DDoS Detection Matrix Using XGBoost Classification with PCA 

No 
Type 
of 
DdoS 

Accuracy Precision Recall 
F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9944 0,9993 0,9944 0,9966 0,0056 0,99 10,79 0,20% 1423,32 0,30% 1402,32 
2 LDAP 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 6,41 0,00% 1107,39 0,10% 1110,59 
3 MSSQL 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 13,80 0,00% 1691,42 0,30% 1683,52 
4 UDP 0,9998 0,9998 0,9998 0,9998 0,0002 1,00 13,41 0,20% 1121,46 0,00% 1102,95 
5 NTP 0,944 0,9894 0,944 0,9628 0,056 0,99 17,80 0,10% 561,24 0,10% 561,35 

 
D. ADABoost 

Table 10: DDoS Detection Matrix Using ADABoost Classification with PCA 

No 
Type 
of 
DdoS 

Accuracy Precision Recall F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9925 0,9993 0,9925 0,9956 0,0075 0,993 98,47 0,30% 1729,35 0,30% 1729,35 
2 LDAP 0,9999 0,9999 0,9999 0,9999 0,0001 1,000 40,63 0,30% 878,92 0,20% 878,92 
3 MSSQL 0,9997 0,9998 0,9997 0,9998 0,0003 0,997 101,16 0,20% 1575,09 0,30% 1575,09 
4 UDP 0,9994 0,9997 0,9994 0,9995 0,0006 1,000 80,74 0,10% 1145,93 0,20% 1145,93 
5 NTP 0,9372 0,9892 0,9327 0,9563 0,0673 0,989 25,84 0,50% 558,4 0,30% 558,4 

 
Model Training with Information Gain 
A. Random Forest 

Table 11: DDoS Detection Matrix Using Random Forest Classification with Information Gain 

No 
Type 
of 
DdoS 

Accuracy Precision Recall F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9997 0,9998 0,9997 0,9997 0,0003 0,9999 6,3 0,20% 2020,08 0,20% 1863,43 
2 LDAP 0,9998 0,9999 0,9998 0,9998 0,0002 0,9999 2,1 0,50% 1030,45 0,20% 1052,20 
3 MSSQL 0,9998 0,9999 0,9998 0,9998 0,0002 0,9999 5,0 0,40% 1902,15 0,10% 1680,79 
4 UDP 0,9993 0,9996 0,9993 0,9994 0,0007 0,9998 4,5 0,20% 1386,15 0,20% 1424,76 
5 NTP 0,9970 0,9976 0,9970 0,9971 0,0030 0,9998 0,9 0,10% 646,03 0,30% 660,57 

 
B. Light Gradient Boosting Machine 

Table 12: DDoS Detection Matrix Using Light Gradient Boosting Machine Classification with 
Information Gain 

No 
Type 
of 
DdoS 

Accuracy Precision Recall 
F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9999 0,9999 0,9999 0,9999 0,0001 1 13,45 0,30% 1711,44 0,10% 1711,52 
2 LDAP 0,9998 0,9998 0,9998 0,9998 0,0002 1 5,05 0,30% 833,11 0,10% 826,73 
3 MSSQL 0,9999 0,9999 0,9999 0,9999 0,0001 1 8,58 0,40% 1567,12 0,10% 1568,00 
4 UDP 0,9999 0,9999 0,9999 0,9999 0,0001 1 3,86 0,30% 1144,03 0,10% 1144,12 
5 NTP 0,9985 0,9987 0,9985 0,9986 0,0015 0,9999 25,36 0,40% 550,11 0,10% 540,20 
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C. XGBOOST 
Table 13: DDoS Detection Matrix Using XGBoost Classification with Information Gain 

No 
Type 
of 
DdoS 

Accuracy Precision Recall F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 21,04 0,10% 1668,89 0,10% 1671,57 
2 LDAP 0,9998 0,9999 0,9998 0,9998 0,0002 1,00 6,32 0,10% 1220,64 0,30% 1220,95 
3 MSSQL 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 12,57 0,10% 1497,45 0,20% 1476,95 
4 UDP 0,9998 0,9998 0,9998 0,9998 0,0002 1,00 22,40 0,00% 1517,80 0,10% 1530,65 
5 NTP 0,9985 0,9987 0,9985 0,9986 0,0015 1,00 17,82 0,30% 701,14 0,10% 703,10 

 
D. ADABoost 

Table 14: DDoS Detection Matrix Using ADABoost Classification with Information Gain 

No 
Type 
of 
DdoS 

Accuracy Precision Recall 
F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9998 0,9998 0,9998 0,9998 0,0002 1,00 117,19 0,20% 1722,06 0,20% 1716,23 
2 LDAP 0,9998 0,9999 0,9998 0,9999 0,0002 1,00 37,30 0,20% 865,10 0,10% 865,24 
3 MSSQL 0,9998 0,9998 0,9998 0,9998 0,0002 1,00 110,85 0,20% 1567,51 0,30% 1567,51 
4 UDP 0,9995 0,9997 0,9995 0,9996 0,0005 1,00 93,08 0,10% 1129,35 0,20% 1125,18 
5 NTP 0,9979 0,9982 0,9979 0,998 0,0021 1,00 24,38 0,40% 558,25 0,20% 558,25 

 
Model Training on Raw Dataset 
A. Random Forest 

Table 15: DDoS Detection Matrix Using Random Forest Classification with Raw Dataset 

No JENIS 
DDOS Accuracy Precision Recall F1 

Score 
Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9997 0,9998 0,9997 0,9997 0,0003 0,9999 22,11 1,20% 16863,78 0,50% 16868,96 
2 LDAP 0,9999 0,9999 0,9999 0,9999 0,0001 1 0,89 1,00% 8846,01 0,40% 8846,38 
3 MSSQL 0,9999 0,9999 0,9999 0,9999 0,0001 1 2,03 0,90% 11796,32 0,50% 11792,75 
4 UDP 0,9996 0,9997 0,9996 0,9997 0,0004 0,9765 1,43 1,20% 10330,49 0,40% 10330,33 
5 NTP 0,9967 0,9974 0,9967 0,9969 0,0033 0,9999 0,6444 1,20% 7969,71 0,50% 7969,26 

 
B. Light Gradient Boosting Machine 

Table 16: DDoS Detection Matrix Using Light Gradient Boosting Machine Classification with Raw 
Dataset 

No JENIS 
DDOS 

Accuracy Precision Recall F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9778 0,9986 0,9778 0,9881 0,0222 0,2135 16,47 72,70% 19533,12 5,29% 19543,92 
2 LDAP 0,9821 0,9985 0,9821 0,9902 0,0179 0,0932 10,12 73,61% 14619,93 6,99% 14619,93 
3 MSSQL 0,9809 0,9991 0,9809 0,9899 0,0191 0,0148 15,48 73,33% 17601,87 5,59% 17603,73 
4 UDP 0,9918 0,9986 0,9918 0,9952 0,0082 0,0623 12,17 72,10% 15710,93 5,59% 15711,98 
5 NTP 0,9880 0,9882 0,9880 0,9825 0,0120 0,6106 8,33 73,70% 11782,53 7,09% 11784,38 

 
C. XGBOOST 

Table 17: DDoS Detection Matrix Using XGBoost Classification with Raw Dataset 

No 
JENIS 
DDOS Accuracy Precision Recall 

F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9921 0,9986 0,9921 0,9953 0,0079 0,1272 32,52 141,41% 11918,26 15,38% 11919,15 
2 LDAP 0,9941 0,9985 0,9941 0,9963 0,0059 0,0859 15,21 143,91% 7887,83 15,78% 7887,39 
3 MSSQL 0,9952 0,9991 0,9952 0,9971 0,0048 0,1026 22,19 144,50% 11210,88 15,48% 11210,88 
4 UDP 0,9974 0.9986 0.9974 0.9980 0.0026 0.2329 19,02 140,60% 9290,65 15,88% 9290,65 
5 NTP 0,9858 0.9768 0.9858 0.9812 0.0142 0.3079 18,41 144,22% 6497,39 16,18% 6497.39 
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D. ADABoost 
Table 18: DDoS Detection Matrix Using ADABoost Classification with Raw Dataset 

No JENIS 
DDOS 

Accuracy Precision Recall F1 
Score 

Misclassification  
Rate 

ROC-
AUC 
Score 

Training 
Time 
(seconds) 

Avg CPU 
usage 
during 
training 

Avg Memory 
usage during 
training (MB) 

Avg CPU 
usage 
during 
testing 

Avg Memory 
usage during 
testing (MB) 

1 DNS 0,9999 0,9999 0,9999 0,9999 0,0001 1,00 3.048,02 0,30% 11043,87 0,40% 11044,18 
2 LDAP 0,8803 0,9985 0,8803 0,9357 0,1197 0,4879 565,64 0,50% 7495,96 0,30% 7496,04 
3 MSSQL 0,8565 0,9991 0,8565 0,9223 0,1435 0,4881 1.886,43 0,40% 10995,48 0,40% 10995,48 
4 UDP 0,9496 0,9986 0,9496 0,9735 0,0504 0,4892 1.533,98 0,20% 9314,25 0,30% 9314,25 
5 NTP 0,941 0,9767 0,941 0,9584 0,059 0,5025 687,77 0,50% 6910,29 0,20% 6910,62 

 
 

3.3 Evaluation 
Model Accuracy Evaluation on Dataset 
The evaluation results show that the models are 
capable of detecting DDoS attacks with high 
accuracy. A summary of the evaluation based on 
the defined metrics is presented in Picture 9. 

Picture 9. Comparison of DDoS Detection 

Accuracy between Feature Selection and Raw 
Datasets 

 
Evaluation of Model Training Time on Dataset 
The evaluation results show variations in 
training time across different datasets. A visual 
summary is presented in Picture 10.  

 
Picture 10. Comparison of Training Time 

between Feature-Selected and Raw Datasets, 
based on the defined metrics 

 
Evaluation of Computational Resource Usage 
During the Training and Testing Process 
The evaluation results of computational 
resource usage during the training and testing 
processes using various feature selection 
methods and raw datasets processed with 
classification are presented. The comparison of 

RAM usage required for training the Feature 
Selection dataset and the raw dataset is visually 
illustrated in Picture 11. The evaluation results 
are as follows: 

 
Picture 11. Comparison Of Ram Usage Required 
For Training Using Feature-Selection Datasets 

And Raw Datasets 
 

Evaluation of RAM Usage During the Model 
Training Process on the Dataset 
The evaluation results of RAM usage during the 
model training process on the dataset indicate 
variations in the amount of RAM resources 
required by the model for training on each 
dataset. The following is a summary of the 
evaluation results based on predefined metrics, 
as illustrated in Picture 12, which presents a 
comparison of RAM usage required for training 
using feature-selection datasets and raw 
datasets: 

 
Picture 12. Comparison Of Ram Usage Required 
For Training Using Feature-Selection Datasets 

And Raw Datasets 
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4. CONCLUSION 
This study found that feature selection methods 
can significantly improve model performance in 
detecting DDoS attacks. The combination of 
Recursive Feature Elimination (RFE) and Light 
Gradient Boosting Machine (LGBM) 
demonstrated a strong balance between 
accuracy and computational efficiency 
compared to other methods, as presented in 
Table 19, which ranks the best Feature Selection 
and Classification methods. 

Table 19: Ranking the Best Feature Selection 

 
 
The results of this research have significant 
practical implications for cybersecurity systems. 
Implementing feature selection methods such 
as RFE, PCA, and IG can reduce the need for 
computational resources, enabling real-time 
DDoS attack detection at lower costs. This is 
especially critical for organizations that need to 
process large volumes of data quickly and 
efficiently. Additionally, the findings suggest 
that by selecting only relevant features, systems 
can become more responsive and reliable in 
dealing with cyber threats. 
 
Recommendations for Future Research 
Based on the findings of this study, the following 
recommendations are proposed for future 
research: 
• Evaluate other feature selection methods 

and their combinations to determine 
whether further improvements in model 
performance can be achieved. 

• Develop and implement more advanced 
machine learning algorithms or hybrid 
models to enhance detection accuracy. 

• Apply this research to other types of 
cyberattacks to assess the effectiveness of 
feature selection methods in different 
contexts. 

• Explore the use of real-time and streaming 
data to test model performance under 
more dynamic and realistic conditions 
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