Perbandingan IndoBERT dan Bi-LSTM Dalam Mendeteksi Pelanggaran Undang-Undang ITE

Authors

Keywords:

Bi-LSTM, IndoBERT, UU ITE

Abstract

Social media has become a widely used platform in Indonesia, facilitating daily information exchange. However, it also serves as a medium for negative content, including hate speech, cyberbullying, and the promotion of illegal activities such as online gambling. This study aims to develop an automatic  classification system to detect ITE Law violations using deep learning approaches. Two models compared are IndoBERT and Bi-LSTM. The dataset used consists of labeled Indonesian-language comments collected from social media and public sources such as Kaggle. The types of ITE violations classified include cyberbullying, hate speech, and online gambling. Experimental results show that both IndoBERT and Bi-LSTM achieved an accuracy of 97%, with IndoBERT performing slightly better in detecting cyberbullying and hate speech. This research is expected to contribute to efforts in automatically preventing ITE Law violations through natural language processing technology.

Author Biography

Christian Sri Kusuma Aditya, Universitas Muhammadiyah Malang

Dosen Universitas Muhammadiyah Malang Jurusan Teknik Informatika

References

[1] M. Sinapoy, Y. Sibaroni, and S. S. Prasetyowati, “Comparison of LSTM and IndoBERT Method in Identifying Hoax on Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 3, pp. 657–662, Jun. 2023, doi: 10.29207/resti.v7i3.4830.

[2] “DIGITAL 2024: THE ESSENTIAL GUIDE TO THE LATEST CONNECTED BEHAVIOURS - We Are Social Indonesia.” Accessed: Jun. 10, 2024. [Online]. Available: https://wearesocial.com/id/blog/2024/01/digital-2024/

[3] I. S. Borualogo, H. Wahyudi, and S. Kusdiyati, “Prevalence and Predictors of Cyberbullying in Middle and High School Students During the COVID-19 Pandemic,” Jurnal Psikologi, vol. 50, no. 2, p. 206, Aug. 2023, doi: 10.22146/jpsi.76494.

[4] “BULLYING IN INDONESIA: Key Facts, Solutions, and Recommendations.” Accessed: Mar. 09, 2025. [Online]. Available: https://www.unicef.org/indonesia/media/5606/file/Bullying.in.Indonesia.pdf

[5] E. N. Putra, “LAW’S SILENCE ON CYBERBULLYING TO CHILDREN IN INDONESIA,” Brawijaya Law Journal, vol. 11, no. 1, pp. 135–163, Mar. 2024, doi: 10.21776/ub.blj.2024.011.01.07.

[6] C. I. Garcia, F. Grasso, A. Luchetta, M. C. Piccirilli, L. Paolucci, and G. Talluri, “A comparison of power quality disturbance detection and classification methods using CNN, LSTM and CNN-LSTM,” Applied Sciences (Switzerland), vol. 10, no. 19, pp. 1–22, Oct. 2020, doi: 10.3390/app10196755.

[7] Y. Wen and P. Ti, “A Study of Legal Judgment Prediction Based on Deep Learning Multi-Fusion Models—Data from China,” Sage Open, vol. 14, no. 3, Jul. 2024, doi: 10.1177/21582440241257682.

[8] S. M. Isa, G. Nico, and M. Permana, “INDOBERT FOR INDONESIAN FAKE NEWS DETECTION,” ICIC Express Letters, vol. 16, no. 3, pp. 289–297, Mar. 2022, doi: 10.24507/icicel.16.03.289.

[9] L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 3, pp. 746–757, 2023, doi: 10.26555/jiteki.v9i3.26490.

[10] A. D. Safira and E. B. Setiawan, “Hoax Detection in Social Media using Bidirectional Long Short-Term Memory (Bi-LSTM) and 1 Dimensional-Convolutional Neural Network (1D-CNN) Methods,” in 2023 11th International Conference on Information and Communication Technology, ICoICT 2023, 2023, pp. 355–360. doi: 10.1109/ICoICT58202.2023.10262528.

[11] J. Kusuma and A. Chowanda, “Indonesian Hate Speech Detection Using IndoBERTweet and BiLSTM on Twitter,” JOIV : International Journal on Informatics Visualization, vol. 7, pp. 773–780, 2023, doi: https://dx.doi.org/10.30630/joiv.7.3.1035.

[12] S. Saadah, K. Auditama, A. Fattahila, F. Amorokhman, A. Aditsania, and A. Rohmawati, “Implementation of BERT, IndoBERT, and CNN-LSTM in Classifying Public Opinion about COVID-19 Vaccine in Indonesia,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 648–655, Aug. 2022, doi: 10.29207/resti.v6i4.4215.

[13] H. Jayadianti, W. Kaswidjanti, A. T. Utomo, S. Saifullah, F. A. Dwiyanto, and R. Drezewski, “Sentiment analysis of Indonesian reviews using fine-tuning IndoBERT and R-CNN,” ILKOM Jurnal Ilmiah, vol. 14, no. 3, pp. 348–354, Dec. 2022, doi: 10.33096/ilkom.v14i3.1505.348-354.

[14] I. Alfina, R. Mulia, M. I. Fanany, and Y. Ekanata, “Hate speech detection in the Indonesian language: A dataset and preliminary study,” in 2017 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2017, Institute of Electrical and Electronics Engineers Inc., Jul. 2017, pp. 233–237. doi: 10.1109/ICACSIS.2017.8355039.

[15] W. Athira Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” vol. 2, no. 11, pp. 4704–4713, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

[16] M. Umer, Z. Imtiaz, S. Ullah, A. Mehmood, G. S. Choi, and B. W. On, “Fake news stance detection using deep learning architecture (CNN-LSTM),” IEEE Access, vol. 8, pp. 156695–156706, 2020, doi: 10.1109/ACCESS.2020.3019735.

[17] S. Pradha, M. N. Halgamuge, and N. Tran Quoc Vinh, “Effective text data preprocessing technique for sentiment analysis in social media data,” in Proceedings of 2019 11th International Conference on Knowledge and Systems Engineering, KSE 2019, Institute of Electrical and Electronics Engineers Inc., Oct. 2019. doi: 10.1109/KSE.2019.8919368.

[18] B. Wilie et al., “IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding,” in AACL-IJCNLP, Sep. 2020. [Online]. Available: http://arxiv.org/abs/2009.05387

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” in Proc. 2019 Conf. North American Chapter Assoc. Comput. Linguist.: Human Language Technology, 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

[20] N. Rai, D. Kumar, N. Kaushik, C. Raj, and A. Ali, “Fake News Classification using transformer based enhanced LSTM and BERT,” International Journal of Cognitive Computing in Engineering, vol. 3, pp. 98–105, Jun. 2022, doi: 10.1016/j.ijcce.2022.03.003.

[21] F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” in Proceedings of the 28th International Conference on Computational Linguistics, Online, 2020, pp. 757–770. doi: 10.18653/v1/2020.coling-main.66.

[22] F. Shahid, A. Zameer, and M. Muneeb, “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM,” Chaos Solitons Fractals, vol. 140, Nov. 2020, doi: 10.1016/j.chaos.2020.110212.

[23] A. Wani, I. Joshi, S. Khandve, V. Wagh, and R. Joshi, “Evaluating Deep Learning Approaches for Covid19 Fake News Detection,” in Combating Online Hostile Posts in Regional Languages during Emergency Situation, Jan. 2021, pp. 153–163. doi: 10.1007/978-3-030-73696-5_15.

[24] R. K. Kaliyar, K. Fitwe, P. Rajarajeswari, and A. Goswami, “Classification of Hoax/Non-Hoax News Articles on Social Media using an Effective Deep Neural Network,” in Proceedings - 5th International Conference on Computing Methodologies and Communication, ICCMC 2021, Institute of Electrical and Electronics Engineers Inc., Apr. 2021, pp. 935–941. doi: 10.1109/ICCMC51019.2021.9418282.

[25] R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models,” in Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, 2020, pp. 79–91. doi: 10.18653/v1/2020.eval4nlp-1.9.

Downloads

Published

2025-04-30

How to Cite

Muhammad Dhafa Maulana, & Christian Sri Kusuma Aditya. (2025). Perbandingan IndoBERT dan Bi-LSTM Dalam Mendeteksi Pelanggaran Undang-Undang ITE. SINTECH (Science and Information Technology) Journal, 8(1), 52–59. Retrieved from https://ejournal.instiki.ac.id/index.php/sintechjournal/article/view/1846