Deteksi Dan Klasifikasi Kondisi Telur Ayam Ras Berdasarkan Kerusakan Kerabang Menggunakan YOLO

Authors

  • Chandra Saputra Universitas Multi Data Palembang
  • Daniel Udjulawa Universitas Multi Data Palembang

DOI:

https://doi.org/10.31598/sintechjournal.v8i3.2001

Keywords:

egg detection, shell damage, YOLOv8, YOLOv11

Abstract

Chicken farming is an important sector that provide animal protein sources, especially through egg production. The high demand for chicken eggs in Indonesia makes a fast and accurate sorting process to ensure quality very important. Until now, the sorting process has been done manually by human workers, which is time-consuming, costly, and prone tohuman error. This study aims to detect and classify the condition of chicken eggs based on shell damage using object detection algorithms such as YOLOv8 and YOLOv11. This experiment uses a dataset of 1280 images with four egg condition, intact, cracked or punctured, white, and soft. The dataset went through pre-processing, augmentation, training, validation, and testing stages. The results showed that both models were able to accurately detect and classify eggs, with YOLOv8 achieving a precision 0.997, a recall 1, an IoU 0.9345, mAP0.5 0.995, and mAP0.5-0.95 0.913, while YOLOv11 was slightly superior due to architectural  improvements through the C3k2 and C2PSA blocks, achieving a precision 0.999, a recall 1, an IoU 0.9347, mAP0.5 0.995, and mAP0.5-0.95 0.912. Further research, is recommended using datasets with more complex backgrounds, varied lighting, and more diverse damage variations

References

1] H. H. A. Bani, “Aplikasi Good Farming Practices Pada Ayam Petelur Milik Bapak Jumain Di Desa Sekar Putih Kecamatan Junrejo, Kabupaten Malang,” 2024.

[2] S. Nugraha and Q. Aulia, “Image Classification Untuk Telur Ayam Menggunakan Smartphone Android Dengan Convolutional Neural Networks (Cnn),” BERNAS J. Pengabdi. Kpd. Masy., vol. 5, no. 2, pp. 1278–1285, 2024, [Online]. Available: https://doi.org/10.31949/jb.v5i2.8187

[3] Badan Pusat Statistik Indonesia, Peternakan Dalam Angka 2024. 2024. [Online]. Available: https://www.bps.go.id/id/publication/2024/12/20/522e07b24c7bbeb1c19b0a4e/peternakan-dalam-angka-2024.html

[4] R. R. M. Akbar, F. Rizal, and W. J. Shudiq, “Implementasi Algoritma Convolutional Neural Network (Cnn) Untuk Deteksi Kesegaran Telur Berbasis Android,” Jusikom J. Sist. Komput. Musirawas, vol. 8, no. 1, pp. 1–10, 2023, doi: 10.32767/jusikom.v8i1.1949.

[5] F. V. C. Rukmana, N. Lestari, N. Saqinnah, and I. Dewi, “Analisis Faktor Harga, Kualitas, dan Pendapatan terhadap Perilaku Pembelian Telur Ayam Ras: Kajian Literatur,” Kontan J. Ekon. Manaj. Dan Bisnis, vol. 4, no. 2, pp. 1–9, 2025, doi: 10.59818/kontan.v4i2.1709.

[6] N. Wakur, E. S. Tangkere, L. J. Lambey, and Y. H. S. Kowel, “Kondisi fisik kerabang telur ayam ras petelur cokelat di Pasar Pinasungkulan Manado,” Zootec, vol. 41, no. 1, p. 1, 2021, doi: 10.35792/zot.41.1.2021.31485.

[7] M Mujiono, A. K. Nalendra, and E. H. Candrapuspa, “Penerapan Logika Fuzzy pada Alat Pendeteksi Kualitas Telur Berbasis Mikrokontroler Arduino,” Gener. J., vol. 7, no. 1, pp. 8–13, 2023, doi: 10.29407/gj.v7i1.17239.

[8] A. L. Affandy, M. Risal, S. Sabridah, R. Riswanda, and S. Syahrizan, “Pemanfaatan Sonsor Ldr Dalam Memilah Telur Ayam Berbasis Arduino Mega,” J. It, vol. 13, no. 3, pp. 85–95, 2022, doi: 10.37639/jti.v13i3.296.

[9] T. Aprianis, “Analisis Pengendalian Mutu Telur Ayam Ras Dalam Upaya Meminimumkan Tingkat Kerusakan Di Cv Gunung Harta Farm,” Perpust. Repos., 2022, [Online]. Available: https://repository.polinela.ac.id/3205/

[10] W. Bilyaro, D. Lestari, and A. S. Endayani, “Identifikasi Kualitas Internal Telur Dan Faktor Penurunan Kualitas Selama Penyimpanan,” J. Agric. Anim. Sci., vol. 1, no. 2, pp. 55–62, 2021, doi: https://doi.org/10.47637/agrimals.v1i2.418.

[11] M. Sholeh and R. P. Astutik, “Rancang Bangun Sistem Otomatis Untuk Penghitungan, Pemilahan, Dan Penilaian Kualitas Telur Dengan Fitur Pengiriman Informasi Ke Whatsapp,” E-Link J. Tek. Elektro dan Inform., vol. 20, no. 1, pp. 89–96, 2025, doi: 10.30587/e-link.v20i1.10096.

[12] R. Rudiansyah, A. A. Sunarto, and D. Indrayana, “Implementasi Algoritma Yolo Untuk Identifikasi Jenis Tanaman Aglaonema,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3S1, 2024, doi: 10.23960/jitet.v12i3s1.5209.

[13] O. Alfiano and dan Santi Rahayu, “Implementasi Algoritma Deep Learning Yolo (You Only Look Once) Untuk Deteksi Kualitas Kentang Segar Dan Busuk Secara Real Time,” JORAPI J. Res. Publ. Innov., vol. 2, no. 3, pp. 2470–2478, 2024, [Online]. Available: https://jurnal.portalpublikasi.id/index.php/JORAPI/index

[14] L. Sihombing and A. Sinambela, “Inovasi Sistem Penyortiran Buah Dengan Pemanfaatan Internet of Things,” Indones. J. Media Informatics, vol. [Volume, j, no. [Nomor, jika ada], p. [Halaman awal, jika ada]-[Halaman akhir, ada], 2025, [Online]. Available: https://ojs.gelcipnus.org/index.php/ijmi/article/view/52

[15] S. A. Ningsih, R. A. Sutiani, N. M. S. Ulandari, and R. A. Saputra, “Penerapan Algoritma Yolo Untuk Mendeteksi Kualitas Telur Ayam Berdasarkan Warna Cangkang,” Method. J. Tek. Inform. dan Sist. Inf., vol. 10, no. 2, pp. 35–39, 2024, doi: 10.46880/mtk.v10i2.3062.

[16] I. Mahfudi, A. R. Setia Nugraha, and A. Muzakhim Imammuddin, “Implementasi You Only Look Once (YOLO) Menggunakan Metode Deep Learning dalam Mendeteksi Telur Menetas pada Reptil,” J. Apl. Sains, Informasi, Elektron. dan Komput., vol. 6, no. 2, pp. 177–184, 2024.

[17] T. Takyudin, M. S. Rais, J. A. Putra, and A. Hamsar, “Metode Deteksi dan Estimasi Luas Lubang Jalan Menggunakan Deep Learning Berbasis YOLOv11,” RIGGS J. Artif. Intell. Digit. Bus., vol. 4, no. 2, pp. 6786–6790, 2025.

[18] D. W. Permatasari and R. E. Putra, “Implementasi Algoritma YOLO11 dalam Mendeteksi Spesies Ikan Laut Komersial secara Real Time untuk Sistem Penyortiran Ikan,” J. Informatics Comput. Sci., vol. 06, pp. 924–931, 2025.

[19] A. I. Pradana, H. Harsanto, and W. Wijiyanto, “Deteksi Rambu Lalu Lintas Real-Time di Indonesia dengan Penerapan YOLOv11: Solusi Untuk Keamanan Berkendara,” J. Algoritm., vol. 21, no. 2, pp. 145–155, 2024, doi: 10.33364/algoritma/v.21-2.2106.

[20] F. F. Masaugi, F. Yanto, E. Budianita, S. Sanjaya, and F. Syafria, “DEEP LEARNING MENGGUNAKAN ALGORITMA XCEPTION DAN AUGMENTASI FLIP PADA KLASIFIKASI KEMATANGAN SAWIT,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 6, 2024, doi: https://doi.org/10.30865/klik.v4i6.1938.

[21] N. A. Putra and A. K. Wardhana, “Image-Based Classification of Healthy and Unhealthy Goats Using ResNet-18 Deep Learning Model,” vol. 9, no. 5, 2025.

[22] Y. Syifa Cendikia, I. Taufik, A. Arnita, Z. Indra, and C. Chairunisah, “Menentukan Warna Make Up Yang Cocok Berdasarkan Jenis Skintone Pada Citra Wajah Menggunakan Naive Bayes Classifier,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 1, pp. 816–823, 2024, doi: 10.36040/jati.v9i1.12494.

[23] A. Sentimen, T. Layanan, A. Modesta, B. Husna, M. Binti Husna, and W. Gata, “Analisis Sentimen Terhadap Layanan Aplikasi Jenius di Media Sosial Menggunakan Alogritma Long Short-Term Memory,” pp. 793–805, 2016.

[24] L. K. Ramadhani and B. N. Widyaningrum, “Implementation of YOLO v11 for Image-Based Litter Detection and Classification in Environmental Management Efforts,” vol. 9, no. 3, pp. 617–624, 2025.

[25] P. Paru-paru, N. S. Mahajaya, P. Desiana, W. Ayu, and R. R. Huizen, “Pengaruh Optimizer Adam , AdamW , SGD , dan LAMB terhadap Model Vision Transformer pada Klasifikasi,” pp. 818–823, 2024.

[26] E. Tangkelobo, W. Mayaut, H. Listanto, I. Binanto, and N. F. Sianipar, “Perbandingan Algoritma Klasifikasi Random Forest , Gaussian Naive Bayes , dan K-Nearest untuk Data Tidak Seimbang dan Data yang diseimbangkan dengan metode Random Undersampling pada dataset LCMS Tanaman Keladi Tikus,” 2023.

[27] A. Luthfi, E. M. Yuniarno, and S. M. S. Nugroho, “Menghitung Luas Bangun Datar pada Papan Tulis Menggunakan Yolo,” J. Tek. ITS, vol. 11, no. 3, 2022, doi: 10.12962/j23373539.v11i3.92620.

[28] J. Bento, T. Paixão, and A. B. Alvarez, “Performance Evaluation of YOLOv8 , YOLOv9 , YOLOv10 , and YOLOv11 for Stamp Detection in Scanned Documents,” 2025.

[29] R. Khanam and M. Hussain, “YOLOv11: An Overview of the Key Architectural Enhancements,” vol. 2024, pp. 1–9, 2024, [Online]. Available: http://arxiv.org/abs/2410.17725

[30] P. Hidayatullah, N. Syakrani, M. R. Sholahuddin, T. Gelar, and R. Tubagus, “YOLOv8 to YOLO11: A Comprehensive Architecture In-depth Comparative Review,” 2025, [Online]. Available: http://arxiv.org/abs/2501.13400

Downloads

Published

2025-12-31

How to Cite

Saputra, C., & Udjulawa, D. (2025). Deteksi Dan Klasifikasi Kondisi Telur Ayam Ras Berdasarkan Kerusakan Kerabang Menggunakan YOLO. SINTECH (Science and Information Technology) Journal, 8(3), 188–199. https://doi.org/10.31598/sintechjournal.v8i3.2001

Similar Articles

You may also start an advanced similarity search for this article.