Analisis Sentimen Pada Pembelajaran Daring Di Indonesia Melalui Twitter Menggunakan Naïve Bayes Classifier
DOI:
https://doi.org/10.31598/sintechjournal.v5i2.1241Keywords:
sentiment analysis, twitter, naïve bayes classifierAbstract
Education is one of the areas most affected by the covid-19 pandemic. Education during the pandemic must continue. To reduce the spread of covid-19 and learning activities can run as usual, the government, in this case the Ministry of Education and Culture, has implemented a distance education system in Indonesia. In addition, the response from the community is very important for an evaluation of the applied online learning. With the implementation of the policy regarding online learning in Indonesia, it is necessary to conduct a sentiment analysis to find out how the responses, opinions, or comments from the public and online learning actors related to online learning are currently being implemented. So the author conducted a research entitled Sentiment Analysis on Online Learning in Indonesia Through Twitter Using the Naïve Bayes Classifier Method to measure student responses regarding online learning during the covid -19 pandemic in Indonesia. The results of the accuracy of this study is 99.8% and the classification error is 0.12%. Of the total data entered, 83 tweets or 20% were included in the positive class, the negative class was 317 tweets or 80%.
Downloads
References
N. K. Astini, Sari, “Pemanfaatan Teknologi Informasi dalam Pembelajaran Tingkat Sekolah Dasar pada Masa Pandemi Covid-19,” J. Lemb. Penjaminan Mutu STKIP Agama Hindu Amlapura, vol. 11, no. 2, pp. 13–25, 2020.
I. B. G. Sarasvananda, I. G. M. N. Desnanjaya, and Y. Dewi, “Klasterisasi Sebaran Kasus Covid-19 Di Kota Denpasar Menggunakan Algoritme K-Means,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. September, p. 565, 2021.
B. G. Sarasvananda and I. K. A. G. I. S. Wiguna, “Pendekatan Metode Extreme Programming untuk Pengembangan Sistem Informasi Manajemen Surat Menyurat pada LPIK STIKI,” J. Inform. Univ. Pamulang, vol. 6, no. 2, pp. 258–267, 2021, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika258.
M. R. Firdaus, F. M. Rizki, F. M. Gaus, and I. K. Susanto, “Analisis Sentimen Dan Topic Modelling Dalam Aplikasi Ruangguru,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 4, no. 1, p. 66, 2020, doi: 10.30645/j-sakti.v4i1.188.
B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.
A. M. Kaplan and M. Haenlein, “Users of the world, unite! The challenges and opportunities of Social Media,” Bus. Horiz., vol. 53, no. 1, pp. 59–68, Jan. 2010, doi: 10.1016/J.BUSHOR.2009.09.003.
A. N. Viani and S. S. M. S. B. Santoso, “Media Baru dan Partisipasi Politik (Pengaruh Twitter Terhadap Tingkat Partisipasi Politik Remaja dalam Pilkada Serentak 2015 pada Mahasiswa Fakultas Ilmu Komunikasi dan Informatika Universitas Muhammadiyah Surakarta Angkatan 2014),” 2017.
D. S. Utami and A. Erfina, “Analisis Sentimen Pinjaman Online di Twitter Menggunakan Algoritma Support Vector Machine (SVM),” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., vol. 1, no. 1, pp. 299–305, 2021.
M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia di Google Playstore Menggunakan Metode Support Vector Machine,” vol. 4, no. 1, pp. 1–13, 2022.
T. M. Permata Aulia, N. Arifin, and R. Mayasari, “Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,” SINTECH (Science Inf. Technol. J., vol. 4, no. 2, pp. 139–145, 2021, doi: 10.31598/sintechjournal.v4i2.762.
F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018, doi: 10.35314/isi.v3i1.335.
R. Apriani et al., “Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia,” J. Rekayasa Teknol. Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019, [Online]. Available: https://rekayasa.nusaputra.ac.id/article/view/86.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 5, no. 2, pp. 697–711, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Ida Bagus Gede Sarasvananda, Diana Selivan, Made Leo Radhitya, I Nyoman Tri Anindia Putra
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright in each article belongs to the author.
- The authors admit that SINTECH Journal as a publisher who published the first time under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
- Authors can include writing separately, regulate distribution of non-ekskulif of manuscripts that have been published in this journal into another version (eg sent to respository institution author, publication into a book, etc.), by recognizing that the manuscripts have been published for the first time in SINTECH Journal