Pengembangan Sistem Prediksi Bantuan Program Keluarga Harapan (PKH) Berbasis Machine Learning
DOI:
https://doi.org/10.31598/sintechjournal.v6i1.1297Keywords:
Family Hope Program, Social Assistance, Poverty, Artificial Neural Network, ConstraintsAbstract
The Family Hope Program (PKH) is a poverty alleviation program which is one of the government's strategies in reducing the poverty line. This program provides cash social assistance to poor families who are included in the list of beneficiary families with a focus on education and health. The purpose of implementing the PKH program is not only to reduce poverty and increase human resources but to break the poverty chain. The implementation of PKH in its realization experienced many obstacles that caused the program not to be on target, this was because the data verification process was not yet effective and was still carried out manually. A process is needed to digitize the distribution and realization of the family of hope program. Through this research, a system was developed that can predict the value of PKH beneficiary assistance. The system developed is based on machine learning with a prediction model using Artificial Neural Network (ANN) and Backpropagation learning algorithm. Parameters in the learning system using PKH assessment as many as 8 indicators from the data of PKH beneficiaries in Tabanan Regency. Based on the prediction model testing using two data treatments, namely with and without preprocessing data. Parameters treated with data on numeric attributes and categories provide optimal values with an R2 Score of 0.695824 with a number of hidden layers of 500 and a max epoch of 375
Downloads
References
A. Wanto and J. T. Hardinata, “Model Jaringan Saraf Tiruan untuk Estimasi Penduduk Miskin di Indonesia Sebagai Upaya Pengentasan Kemiskinan,” in Seminar Nasional Aplikasi Teknologi Informasi (SNATi), 2019, pp. 17–26.
A. A. Mudaddad and A. Kriswibowo, “Optimalizing Big Data in Reducing Miss-Targeting Family Hope Program (PKH) in Sidoarjo Disctrict with Approach Machine Learning,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 1, pp. 99–110, 2021.
E. Fitriani, “Perbandingan Algoritma C4.5 Dan Naïve Bayes Untuk Menentukan Kelayakan Penerima Bantuan Program Keluarga Harapan,” Jurnal Sistem Informasi (SISTEMASI), vol. 9, no. 1, pp. 103–115, 2020.
C. Dewi and Y. Yulianto, “Sistem Penyeleksi Penerima Bantuan Beras Miskin Kauman Kidul Menggunakan Metode Weighted Product Berbasis Mobile,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 4, no. 1, pp. 103–112, 2018.
I. G. N. L. Wijayakusuma and N. K. E. Sapitri, “Penerapan Jaringan Syaraf Tiruan Dalam Pembentukan Model Peramalan Angka Melek Huruf di Kabupaten Karangasem,” Jurnal Matematika, vol. 10, no. 1, pp. 11–21, 2020.
G. Y. K. S. S Pahu, L. R Putri, Nungsiyati, and R. Renaldo, “Sistem Pendukung Keputusan Menentukan Calon Penerima Raskin Menggunakan Metode Simple Additive Weighting,” Jurnal TEKNOINFO, vol. 12, no. 2, pp. 82–86, 2018.
M. K. Sari, Ernawati, and Pranowo, “Kombinasi Metode K-Nearest Neighbor dan Naive bayes Untuk Klasifikasi Data,” in Seminar Nasional Teknologi Informasi dan Multimedia, 2015, pp. 37–41.
A. A. Maulana, N. Hidayat, and Suprapto, “Sistem Pendukung Keputusan Penentuan Penerima Bantuan Keluarga Miskin Menggunakan Metode Analytical Hierarchy Process-Technique For Order Of Preference By Similarity To Ideal Solution (AHP-TOPSIS),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, pp. 3890–3898, 2018.
I. W. Supriana and L. G. Astuti, “Implementasi K-Nearest Neighbor Pada Penentuan Keluarga Miskin Bagi Dinas Sosial Kabupaten Tabanan,” Jurnal Teknologi Informasi Dan Komputer, vol. 5, no. 1, pp. 120–129, 2019.
A. Wanto, “Penerapan Jaringan Saraf Tiruan Dalam Memprediksi Jumlah Kemiskinan Pada Kabupaten/Kota Di Provinsi Riau,” Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 5, no. 1, pp. 61–74, 2018.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 I Wayan Supriana Supriana, Made Agung Raharja, I Made Satria Bimantara
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright in each article belongs to the author.
- The authors admit that SINTECH Journal as a publisher who published the first time under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
- Authors can include writing separately, regulate distribution of non-ekskulif of manuscripts that have been published in this journal into another version (eg sent to respository institution author, publication into a book, etc.), by recognizing that the manuscripts have been published for the first time in SINTECH Journal