Optimalisasi AI Writing Companion dengan Metaheuristic Algorithm Pada Teks English

Authors

  • Fransiskus Karbiya Anot Putra Universitas Budi Luhur
  • Indra Budi Patria Universitas Budi Luhur
  • Indra Nugraha Abdullah Universitas Budi Luhur
  • Dewi Kusumaningsih Universitas Budi Luhur

DOI:

https://doi.org/10.31598/sintechjournal.v8i3.1988

Keywords:

google colab, google sites, data processing, result visualization, artificial intelligence

Abstract

This study aims to optimize an AI Writing Companion through the application of a metaheuristic Genetic Algorithm (GA) to enhance English text analysis accuracy. The system evaluates vocabulary richness, sentence structure, word diversity, and grammatical correctness using the language-tool-python library. Implementation is conducted in Google Colab, and interactive result visualization is integrated via Google Sites. The GA effectively refines feature selection, identifying vocab_diversity as the dominant feature with an objective value of 0.9115. Testing on a 118-word input containing 90 unique words produced an average word length of 4.53, a diversity score of 0.763, and a grammar accuracy score of 0.983. Two grammatical errors were identified across seven sentences, resulting in a final score of 76.27, complemented by 8 gamification points. Users also receive qualitative feedback related to tense consistency and punctuation accuracy. The integration of gamification enhances user engagement, positioning the system not only as a correction tool but also as an interactive educational platform that fosters continuous improvement in English writing proficiency

References

[1] M. Alenezi and M. Akour, “AI-Driven Innovations in Software Engineering: A Review of Current Practices and Future Directions,” Applied Sciences (Switzerland), vol. 15, no. 3, Feb. 2025, doi: 10.3390/app15031344.

[2] J. Varajão, J. C. Lourenço, and J. Gomes, “Models and methods for information systems project success evaluation – A review and directions for research,” Dec. 01, 2022, Elsevier Ltd. doi: 10.1016/j.heliyon.2022.e11977.

[3] N. Vandermeulen, E. Lindgren, C. Waldmann, and M. Levlin, “Getting a grip on the writing process: (Effective) approaches to write argumentative and narrative texts in L1 and L2,” J Second Lang Writ, vol. 65, Sep. 2024, doi: 10.1016/j.jslw.2024.101113.

[4] F. Septian, U. Serelo Lahat, T. Ribang Kemambang, B. Agung, and B. Jaya, “Unlocking Communication Wonders: Exploring Transmitter and Receiver Concepts with p5.js,” JOURNAL SHIFT VOL, vol. 4, 2024.

[5] T. Barros-Everett, E. Montero, and N. Rojas-Morales, “Parameter Prediction for Metaheuristic Algorithms Solving Routing Problem Instances Using Machine Learning,” Applied Sciences (Switzerland), vol. 15, no. 6, Mar. 2025, doi: 10.3390/app15062946.

[6] C. H. Wang, K. Hu, X. Wu, and Y. Ou, “Rethinking Metaheuristics: Unveiling the Myth of ‘Novelty’ in Metaheuristic Algorithms,” Jul. 01, 2025, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/math13132158.

[7] S. Sachan and P. Swarnkar, “Investigations on meta-heuristic algorithms for intelligent speed regulation of mobile robot,” Results in Control and Optimization, vol. 11, Jun. 2023, doi: 10.1016/j.rico.2023.100232.

[8] P. Agrawal, H. F. Abutarboush, T. Ganesh, and A. W. Mohamed, “Metaheuristic algorithms on feature selection: A survey of one decade of research (2009-2019),” IEEE Access, vol. 9, pp. 26766–26791, 2021, doi: 10.1109/ACCESS.2021.3056407.

[9] D. Gürkan Kuntalp, N. Özcan, O. Düzyel, F. Y. Kababulut, and M. Kuntalp, “A Comparative Study of Metaheuristic Feature Selection Algorithms for Respiratory Disease Classification,” Diagnostics, vol. 14, no. 19, Oct. 2024, doi: 10.3390/diagnostics14192244.

[10] S. Nur Himawan, N. Budi Nugraha, J. Teknik Informatika, and P. Negeri Indramayu, “Feature Selection Menggunakan Algoritma Meta-Heuristik,” 2022.

[11] W. Jia, M. Sun, J. Lian, and S. Hou, “Feature dimensionality reduction: a review,” Complex and Intelligent Systems, vol. 8, no. 3, pp. 2663–2693, Jun. 2022, doi: 10.1007/s40747-021-00637-x.

[12] Y. Song, J. Wang, Y. Ge, and C. Xu, “An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data,” GIsci Remote Sens, vol. 57, no. 5, pp. 593–610, Jul. 2020, doi: 10.1080/15481603.2020.1760434.

[13] A. Aldoseri, K. N. Al-Khalifa, and A. M. Hamouda, “Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges,” Jun. 01, 2023, MDPI. doi: 10.3390/app13127082.

[14] M. Naeem, W. Ozuem, K. Howell, and S. Ranfagni, “A Step-by-Step Process of Thematic Analysis to Develop a Conceptual Model in Qualitative Research,” Int J Qual Methods, vol. 22, Jan. 2023, doi: 10.1177/16094069231205789.

[15] I. H. Sarker, “Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective,” Sep. 01, 2021, Springer. doi: 10.1007/s42979-021-00765-8.

[16] M. khanna, L. K. Singh, K. Shrivastava, and R. singh, “An enhanced and efficient approach for feature selection for chronic human disease prediction: A breast cancer study,” Heliyon, vol. 10, no. 5, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26799.

[17] A. Professor Mohammad Salim Hamdard and A. Professor Hedayatullah Lodin, “INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND ANALYSIS Effect of Feature Selection on the Accuracy of Machine Learning Model,” 2023, doi: 10.47191/ijmra/v6-i9-66.

[18] F. Septian and N. D. Putriani, “Identification of Determinants of Inclusive Economic Growth Using the Metaheuristic Whale Optimization Algorithm Approach,” 2025.

[19] W. N. Ismail, H. A. Alsalamah, M. M. Hassan, and E. Mohamed, “AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design,” Feb. 01, 2023, Elsevier Ltd. doi: 10.1016/j.heliyon.2023.e13636.

[20] N. Pilnenskiy and I. Smetannikov, “Feature selection algorithms as one of the python data analytical tools,” Future Internet, vol. 12, no. 3, Mar. 2020, doi: 10.3390/fi12030054.

Downloads

Published

2025-12-31

How to Cite

Karbiya Anot Putra, F., Indra Budi Patria, Indra Nugraha Abdullah, & Dewi Kusumaningsih. (2025). Optimalisasi AI Writing Companion dengan Metaheuristic Algorithm Pada Teks English. SINTECH (Science and Information Technology) Journal, 8(3), 211–219. https://doi.org/10.31598/sintechjournal.v8i3.1988

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.