Klasifikasi Tanaman Calathea Menggunakan Metode SVM Berbasis Fitur HSV dan HOG
Keywords:
Calathea, support vector machine, HSV, HOG, image classificationAbstract
The visual similarity among Calathea varieties—especially in leaf color, pattern, and texture, often causes misidentification by the general public and even horticulturists. This research proposes an automated classification system for five Calathea varieties (Black Lipstick, Corona, Crimson, Medallion, and Pink Jessy) using Support Vector Machine (SVM) based on combined HSV (Hue, Saturation, Value) and HOG (Histogram of Oriented Gradients) features. A dataset of 1,000 leaf images was collected under controlled conditions (white background, fixed distance, consistent lighting) and processed through preprocessing, HSV-based color segmentation, grayscale conversion, and HOG feature extraction. The SVM model with a linear kernel was evaluated using 5-fold cross-validation. The system achieved an overall average accuracy of 93.52%, with Calathea Corona showing the highest accuracy (96.50%) and precision (95.12%), while Calathea Black Lipstick recorded the lowest precision (67.50%) but the highest recall (92.00%). These results demonstrate that the fusion of color and shape features enhances classification performance, although complex leaf patterns can still pose challenges in precision. This approach offers a practical and objective solution for Calathea identification in horticultural applications.
References
[1] M. Y. F., Dasar Pengolahan Citra Digital. 2020.
[2] S. Andayani, L. Kusneti, U. Katolik, M. Charitas, and A. History, “Using the Support Vector Machine method with the HOG feature for classification of orchid types,” AITI J. Teknol. Inf., vol. 21, no. 1, pp. 82–95, 2024.
[3] R. Dijaya, Buku Ajar Pengolahan Citra Digital. 2023.
[4] K. P. D. J. HORTIKULTURA, Tanaman Hias Berdaun Indah. KEMENTERIAN PERTANIAN DIREKTORAT JENDERAL HORTIKULTURA DIREKTORAT BUAH DAN FLORIKULTURA, 2021.
[5] N. R. Hanik, F. A. Cahyanti, and T. Wahyuni, “Identification of Pests and Diseases of Calathea Ornamental Plants in Ngledoksari Village , Karanganyar,” J. Biol. Trop., vol. 24, pp. 641–650, 2024.
[6] M. Fansyuri, “Analisis Support Vector Machine ( SVM ) dalam Pengenalan Citra Bunga Menggunakan Fitur Warna dan Bentuk,” OKTAL J. Ilmu Komput. dan Sci., vol. 1, no. 09, pp. 1579–1590, 2022.
[7] H. Durairaj and P. Sapient, “Interactive Color Image Segmentation using HSV Color Space,” Sci. Technol. J. ·, vol. 7, no. 1, 2020, doi: 10.22232/stj.2019.07.01.05.
[8] D. Udjulawa and T. I. Sariyo, “Klasifikasi Jenis Jamur Menggunakan SVM dengan Fitur HSV dan HOG,” PETIR J. Pengkaj. dan Penerapan Tek. Inform., vol. 15, no. 1, pp. 113–120, 2022.
[9] H. Leidiyana and J. Warta, “Implementasi Metode SVM untuk Klasifikasi Bunga dengan Ekstraksi Fitur Histogram of Gradient ( HOG ),” J. Inf. Inf. Secur., vol. 3, no. 1, pp. 89–98, 2022.
[10] Rial Prasthio, Yohannes, and S. Devella, “Penggunaan Fitur HOG Dan HSV Untuk Klasifikasi Citra Sel Darah Putih,” J. Algoritm., vol. 2, no. 2, pp. 120–132, 2022.
[11] A. Y. Kuswari, M. A. Rahman, D. Alamsyah, and S. V. Machine, “Klasifikasi Jenis Bunga Menggunakan Support Vector Machine dengan Fitur HSV dan HOG,” no. x, 2018.
[12] Marini and Hariyanto, “Implementasi Metode HOG ( Histogram Of Oriented Gradient ) Untuk Mendeteksi Pejalan Kaki Pada Citra Video,” Innov. J. Soc. Sci. Res., vol. 4, no. 4, pp. 13964–13970, 2024.
[13] N. Rachmat, Yohannes, and A. Mahendra, “Klasifikasi Jenis Ikan Laut Menggunakan Metode SVM Dengan Fitur HOG Dan HSV,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 4, pp. 2235–2247, 2021.
[14] S. Singh, D. Singh, and V. Yadav, “Face Recognition Using HOG Feature Extraction and SVM Classifier,” Int. J. Emerg. Trends Eng. Res., no. 9, pp. 6437–6440, 2020.
[15] S. Rajaa, “Facial Expression Recognition System Based on SVM and HOG Techniques,” Int. J. Image Process., vol. 15, no. 2, pp. 14–21, 2021.
[16] Y. G. Lestari and H. Irsyad, “Penggunaan Metode SVM Dengan Fitur HSV HOG Dalam Mengklasifikasi Jenis Ikan Guppy,” J. Algoritm., vol. 4, no. 1, pp. 21–31, 2023, doi: 10.35957/algoritme.xxxx.
[17] A. B. Kurniawan et al., “KLASIFIKASI JENIS TERUNG MENGGUNAKAN METODE SVM,” in MDP STUDENT CONFERENCE (MSC), 2023, pp. 185–191.
[18] I. Badruddin, T. R. Nugrahanto, O. D. Pangesti, T. Agustin, and J. Tengah, “Pendekatan pengurangan overfitting pada mobilenet untuk klasifikasi citra sampah,” in SEMINAR NASIONAL AMIKOM SURAKARTA (SEMNASA), 2024, pp. 226–234.
[19] T. J. Bradshaw, “A Guide to Cross-Validation for Artificial Intelligence in,” Radiol. Artif. Intell., no. 12, 2023.
[20] M. R. Saputra and H. Irsyad, “Klasifikasi Tingkat Kemanisan Alpukat Berdasarkan Fitur Hue Saturation Value ( HSV ) dengan Menggunakan Support Vector Machine ( SVM ),” Algoritme, vol. 2, no. 2, pp. 113–119, 2022.
Downloads
Published
Versions
- 2025-12-31 (2)
- 2026-02-06 (1)
How to Cite
Issue
Section
License
Copyright (c) 2026 Sri Andayani, Nining Ariati, Ayu Elisya Natama Sianturi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.









1.png)



