Peringkasan Teks Putusan Pengadilan Berbahasa Indonesia Menggunakan Algoritma TextRank
Keywords:
automatic text summarization, cosine similarity, court decisions, natural language processing, textrank, tf-idfAbstract
Court decisions are important legal documents that are often long and complex, which may cause difficulties for readers in understanding the meaning and may imply a lenghty reading time. This research raises the issue of how to develop a web-based text auto summarization application for court decision documents in Indonesian languange. This research uses mixed methods. As for the software development life cycle, we use the Agile methodology. Within the development we use a natural language processing approach that includes tokenization, text cleaning, stemming, term frequency-inverse document frequency (TF-IDF) calculation, and application of cosine similarity to measure the similarity between sentences before applying the TextRank algorithm. We use the Python programming language and the Flask web framework, utilizing libraries such as PyPDF2 for PDF processing, Sastrawi for the stemming process, and NetworkX for the implementation of the TextRank algorithm. The dataset used consists of 50 court decision documents. Evaluation of the application is carried out using precision, recall, and F-measure metrics, comparing the application's summarization results against the reference summary made by an expert. The test shows the highest precision value of 0.62 at a compression rate of 75%, demonstrating the application's ability to produce informative summaries. This research is expected to contribute to the development of text auto summarization applications on court decision documents, as well as to open up opportunities for further research.
References
G. Z. Maulidya, S. N. Rahmawati, V. Rahmawati, and A. F. Mardany, “Ratio Decidendi Putusan, Jenis-Jenis Putusan dan Upaya Hukum Terhadap Putusan yang Telah Memiliki Kekuatan Hukum Tetap Ditinjau dari Perspektif Hukum Acara Pidana di Indonesia,” HUKMY Jurnal Hukum, vol. 3, no. 1, pp. 211–230, May 2023, doi: 10.35316/hukmy.2023.v3i1.211-230.
S. Shidarta, “Putusan Pengadilan sebagai Objek Penulisan Artikel Ilmiah,” Undang Jurnal Hukum, vol. 5, no. 1, pp. 105–142, Jul. 2022, doi: 10.22437/ujh.5.1.105-142.
D. A. Wicaksana, Penelitian format putusan pengadilan Indonesia: studi empat lingkungan peradilan di bawah Mahkamah Agung. 2020.
S. Thange, J. Dange, V. Karjule, and J. Sase, “A survey on text summarization Techniques,” International Journal of Scientific and Research Publications, vol. 13, no. 11, pp. 528–535, Nov. 2023, doi: 10.29322/ijsrp.13.11.2023.p14355.
S. Alhojely and J. Kalita, “Recent Progress on Text Summarization,” 2020 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 1503–1509, Dec. 2020, doi: 10.1109/csci51800.2020.00278.
G. W. Wicaksono, S. F. A. Asqalani, Y. Azhar, N. P. Hidayah, and A. Andreawana, “Automatic Summarization of Court Decision Documents over Narcotic Cases Using BERT,” JOIV International Journal on Informatics Visualization, vol. 7, no. 2, p. 416, May 2023, doi: 10.30630/joiv.7.2.1811.
M. Rusbandi, I. F. Rozi, and K. S. Batubulan, “Otomatisasi peringkasan teks pada dokumen hukum menggunakan metode latent semantic analysis,” Jurnal Informatika Polinema, vol. 7, no. 3, pp. 9–16, Jun. 2021, doi: 10.33795/jip.v7i3.515.
M. S. Zulvi, “Systematic Literature Review Penerapan metodologi agile dalam berbagai bidang,” Jurnal Komputer Terapan, vol. 7, no. 2, pp. 300–313, Dec. 2021, doi: 10.35143/jkt.v7i2.5116.
F. Paramudita and M. I. Zulfa, “Aplikasi Android pendeteksi kualitas beras berbasis machine learning menggunakan metode Convolutional Neural Network,” Jurnal Pendidikan Dan Teknologi Indonesia, vol. 3, no. 7, pp. 297–305, Aug. 2023, doi: 10.52436/1.jpti.310.
Sheilafitria, “Court Decision Document in Narcotic Cases Summarization Using BERT.,” GitHub. https://github.com/sheilafitria/Court-Decision-Document-in-Narcotic-Cases-Summarization-Using-BERT (accessed Sep. 20, 2024).
J. Petrus, E. Ermatita, S. Sukemi, and E. Erwin, “An adaptable sentence segmentation based on Indonesian rules,” IAES International Journal of Artificial Intelligence, vol. 12, no. 3, p. 1491, Mar. 2023, doi: 10.11591/ijai.v12.i3.pp1491-1499.
D. Mustikasari, I. Widaningrum, R. Arifin, and W. H. E. Putri, “Comparison of effectiveness of stemming algorithms in Indonesian documents,” Advances in Engineering Research/Advances in Engineering Research, Jan. 2021, doi: 10.2991/aer.k.210810.025.
U. Rani and K. Bidhan, “Comparative assessment of extractive summarization: TextRank, TF-IDF and LDA,” Journal of Scientific Research, vol. 65, no. 01, pp. 304–311, Jan. 2021, doi: 10.37398/jsr.2021.650140.
G. Salton, Automatic text processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison Wesley Publishing Company, 1989.
T. Tokunaga and M. Iwayama, “Text Categorization based on Weighted Inverse Document Frequency,” IPSJ SIG Notes, vol. 1994, no. 28, pp. 33–40, Mar. 1994, [Online]. Available: https://ci.nii.ac.jp/naid/110002934824
N. Y. Januzaj and N. A. Luma, “Cosine Similarity – a computing approach to match similarity between higher education programs and job market demands based on maximum number of common words,” International Journal of Emerging Technologies in Learning (iJET), vol. 17, no. 12, pp. 258–268, Jun. 2022, doi: 10.3991/ijet.v17i12.30375.
G. Tapas and N. Mehala, “Latent semantic analysis in automatic text summarisation: a state-of-the-art analysis,” International Journal of Intelligence and Sustainable Computing, vol. 1, no. 2, p. 128, Jan. 2021, doi: 10.1504/ijisc.2021.113294.
J. Steinberger and K. Jezek, "Using Latent Semantic Analysis in Text Summarization and Summary Evaluation," in Proceedings of the International Conference on Information Systems Implementation and Modeling (ISIM), 2004, pp. 93-100.
R. Mihalcea and P. Tarau, “TextRank: Bringing Order into Text,” Empirical Methods in Natural Language Processing, pp. 404–411, Jul. 2004, [Online]. Available: https://digital.library.unt.edu/ark:/67531/metadc30962/m2/1/high_res_d/Mihalcea-2004-TextRank-Bringing_Order_into_Texts.pdf
I. M. S. Putra, Y. Adiwinata, D. P. S. Putri, and N. P. Sutramiani, “Extractive text summarization of student essay assignment using sentence weight features and fuzzy C-Means,” International Journal of Artificial Intelligence Research, vol. 5, no. 1, Jan. 2021, doi: 10.29099/ijair.v5i1.187.
P. Christen, D. J. Hand, and N. Kirielle, “A review of the F-Measure: its history, properties, criticism, and alternatives,” ACM Computing Surveys, vol. 56, no. 3, pp. 1–24, Jun. 2023, doi: 10.1145/3606367.
A. F. Sadeli and I. I. Lawanda, “Recall, precision, and F-Measure for evaluating information retrieval system in Electronic Document Management Systems (EDMS),” Khizanah al-Hikmah Jurnal Ilmu Perpustakaan Informasi Dan Kearsipan, vol. 11, no. 2, pp. 231–241, Nov. 2023, doi: 10.24252/kah.v11i2a8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Miftah Adha, Mohammad Nasucha

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.