Klasifikasi Citra Keris Bali Menggunakan Ektrasi Fitur Gray Level Co-Occurrence Matrix Dengan Klasifier KNN (K-Nearest Neighbor)
DOI:
https://doi.org/10.31598/sintechjournal.v8i2.1925Keywords:
Balinese keris, Classification, GLCM, KNN, pamorAbstract
Pamor is a distinctive pattern on the blade of a keris formed through folded metal forging techniques, carrying aesthetic and philosophical values in Balinese culture. Manual identification of pamor often leads to errors due to the similarity of patterns and names among its types. This study aims to develop an automatic classification system for Balinese keris pamor using digital image processing. The dataset was obtained from the Bali Keris Museum consisting of 26 original images, which were pre-processed through cropping, grayscale conversion, and resizing. To balance the dataset, image augmentation was applied by rotating 45°, 90°, and 180°, resulting in 250 images evenly distributed across five pamor classes: tiban, miring, puntiran, tambal, and gedheg. Texture features were extracted using the Gray Level Co-Occurrence Matrix (GLCM) with parameters of contrast, correlation, energy, and homogeneity. These features were then classified using the K-Nearest Neighbor (KNN) algorithm with K values of 7, 9, and 11. The results indicate that K = 7 achieved the highest accuracy of 80%, while K = 9 obtained 78% and K = 11 decreased to 68%. This finding confirms that the selection of the K parameter significantly influences classification performance, and that the combination of GLCM and KNN can effectively support the automatic and objective identification of Balinese keris pamor
References
[1] A. A. G. N. K. Yadnya, M. I. Mulyati, and P. A. Darmastuti, “DESAIN INTERIOR MUSEUM KERIS SEBAGAI SARANA EDUKASI BUDAYA LOGAM BALI,” J. Vastukara J. Desain Inter. Budaya, dan Lingkung. Terbangun, vol. 1, no. 2, pp. 181–191, 2021, doi: 10.59997/vastukara.v1i2.547.
[2] I. M. A. Yasa, I. B. P. Arnyana, and I. W. Suastra, “Keris Sebagai Representatif Manusia Dalam Peradaban Masyarakat Bali Di Lombok,” Widya Sandhi J. Kaji. agama, Sos. dan Budaya, vol. 14, no. 2, pp. 88–107, 2023, doi: 10.53977/ws.v14i2.1078.
[3] I Gede Aris Gunadi, “Pembentukan Dataset Data 2 Keris Dan Pengenalan Jenis, Karakteristik, dan Fungsionalitas Keris Dengan Menggunakan Algoritma Convolusional Neural Network (CNN).,” Singaraja, 2023.
[4] N. Neneng, A. S. Puspaningrum, and A. A. Aldino, “Perbandingan Hasil Klasifikasi Jenis Daging Menggunakan Ekstraksi Ciri Tekstur Gray Level Co-occurrence Matrices (GLCM) Dan Local Binary Pattern (LBP),” SMATIKA J., vol. 11, no. 01, pp. 48–52, 2021, doi: 10.32664/smatika.v11i01.572.
[5] J. Lin and H. Irsyad, “Klasifikasi Pneumonia Pada Citra X-Rays Paru-Paru Menggunakan GLCM Dan LVQ,” J. Algoritm., vol. 1, no. 2, pp. 184–194, 2021, doi: 10.35957/algoritme.v1i2.897.
[6] G. Daruhadi and P. Sopiati, “Pengumpulan Data Penelitian,” J. Cendekia Ilm., vol. 3, no. 5, pp. 5423–5443, 2024, doi: https://doi.org/10.56799/jceki.v3i5.5181.
[7] T. Akbar, M. R. Edy, N. A. P. Hasbullah, R. A. Saputra, and M. A. Amir, “Klasifikasi jenis obat berdasarkan logo pada kemasan menggunakan algoritma k-nearest neighbor berbasis citra digital,” J. Deep Learn. Comput. Vis. Digit. Image Process., vol. 1, no. 1, pp. 11–19, 2023, doi: https://doi.org/10.61255/decoding.v1i1.48.
[8] A. Antoni, T. Rohana, and A. R. Pratama, “Implementasi Algoritma Convolutional Neural Network Untuk Klasifikasi Citra Kemasan Kardus Defect dan No Defect,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1941–1950, 2023, doi: 10.47065/bits.v4i4.3270.
[9] Ananta Dwi Prayoga Alwy, M Syahid Nur Wahid, Bukhari Naufal Nur Ag, and M Miftach Fakhri, “Klasifikasi Penyakit Pada Padi Dengan Ekstraksi Fitur LBP dan GLCM,” J. Deep Learn. Comput. Vis. Digit. Image Process., pp. 1–10, 2023, doi: 10.61255/decoding.v1i1.51.
[10] R. Z. Fadillah, A. Irawan, M. Susanty, and I. Artikel, “Data Augmentasi Untuk Mengatasi Keterbatasan Data Pada Model Penerjemah Bahasa Isyarat Indonesia (BISINDO),” J. Inform., vol. 8, no. 2, pp. 208–214, 2021.
[11] M. Muhathir, M. H. Santoso, and D. A. Larasati, “Wayang Image Classification Using SVM Method and GLCM Feature Extraction,” J. INFORMATICS Telecommun. Eng., vol. 4, no. 2, pp. 373–382, 2021, doi: 10.31289/jite.v4i2.4524.
[12] M. Muhathir, M. H. Santoso, and D. A. Larasati, “Wayang image classification using SVM method and GLCM feature extraction,” J. Informatics Telecommun. Eng., vol. 4, no. 2, pp. 373–382, 2021.
[13] W. Musu, A. Ibrahim, and H. Heriadi, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4. 5,” in SISITI: Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, 2021, pp. 186–195.
[14] Y. Astuti, I. R. Wulandari, A. R. Putra, and N. Kharomadhona, “Naïve Bayes untuk Prediksi Tingkat Pemahaman Kuliah Online Terhadap Mata Kuliah Algoritma Struktur Data,” J. Edukasi dan Penelit. Inf., vol. 8, no. 1, p. 28, 2022.
[15] N. Prasetya and W. Tampubolon, “Penerapan Algoritma K-Nearest Neighbor (KNN) Untuk Prediksi Pengajuan Kredit Perumahan Pada PT. Bopala Kencana Permai.” Institut Teknologi dan Bisnis Palcomtech, 2022.
[16] H. GUSMI, S. T. Atmoko Nugroho, and N. J. F. File, “SISTEM PENDUKUNG KEPUTUSAN PENENTUAN JURUSAN DI MA HIDAYATUS SYUBBAN MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN)”.
[17] A. M. Argina, “Penerapan metode klasifikasi k-nearest neigbor pada dataset penderita penyakit diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020, doi: https://doi.org/10.33096/ijodas.v1i2.11.
[18] L. N. Farida and S. Bahri, “Klasifikasi Gagal Jantung menggunakan Metode SVM (Support Vector Machine),” Komputika J. Sist. Komput., vol. 13, no. 2, pp. 149–156, 2024, doi: 10.34010/komputika.v13i2.11330.
[19] B. P. Pratiwi, A. S. Handayani, and S. Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix,” J. Inform. Upgris, vol. 6, no. 2, 2020, doi: https://doi.org/10.26877/jiu.v6i2.6552.
[20] M. Ikhsan, S. Supiyandi, and A. W. Hakiki, “Analisis Perbandingan Metode Histogram Equalization dan Gaussian Filter untuk Perbaikan Kualitas Citra,” J. Sci. Soc. Res., vol. 7, no. 2, pp. 487–492, 2024, doi: https://doi.org/10.54314/jssr.v7i2.186
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ni Luh Putu Sri Utami, I Gede Aris Gunadi, Gede Indrawan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.