Klasifikasi Penyakit Demam Berdarah Menggunakan Algoritma Stacking Ensemble Learning
DOI:
https://doi.org/10.31598/sintechjournal.v8i2.1854Keywords:
dengue hemorrhagic fever, Classification, machine learning, stacking ensemble learning, confusion matrixAbstract
Dengue Hemorrhagic Fever (DHF) is a contagious disease that remains a serious public health issue in Indonesia, with a consistent increase in cases each year. One of the main challenges is achieving accurate early diagnosis, as the initial symptoms often resemble other diseases such as influenza or chikungunya. This study aims to develop a DHF classification model using the stacking ensemble learning method to improve diagnostic accuracy compared to single classifier methods. The dataset consists of 650 patient medical records from Puskesmas I Mengwi District, including demographic data and clinical features such as rash, pain, body temperature, bleeding, and laboratory results. The research process involves data preprocessing, the implementation of three base learners (K-Nearest Neighbor, Naïve Bayes, and Decision Tree), and Logistic Regression as the meta-learner. Evaluation using k-fold cross-validation (5-fold and 10-fold) shows that the stacking ensemble achieves the highest accuracy of 84.15%, with a precision of 85.28%, recall of 92.62%, and F1-Score of 88.70%. These results demonstrate that stacking provides better and more stable performance than single classifiers. The proposed model has the potential to support early DHF diagnosis in healthcare facilities, helping medical personnel improve diagnostic accuracy and treatment effectiveness
References
[1] Y. Liang and X. Dai, “The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021,” Front Microbiol, vol. 15, Aug. 2024, doi: 10.3389/fmicb.2024.1458166.
[2] S.-X. Zhang et al., “Global, regional, and national burden of dengue, 1990–2021: Findings from the global burden of disease study 2021,” Decoding Infection and Transmission, vol. 2, p. 100021, 2024, doi: 10.1016/j.dcit.2024.100021.
[3] Rokom, “Waspada DBD di Musim Kemarau,” Kementrian Kesehatan. Accessed: Dec. 26, 2024. [Online]. Available: https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20240616/0045767/waspada-dbd-di-musim-kemarau/
[4] N. D. Rinarto et al., “Community Empowerment in Prevention of Dengue Hemorrhagic Fever (DHF) in Coastal Areas,” Journal of Community Engagement in Health and Nursing, vol. 1, no. 2, pp. 61–65, Jul. 2023, doi: 10.30643/jcehn.v1i2.305.
[5] N. Tian et al., “Dengue Incidence Trends and Its Burden in Major Endemic Regions from 1990 to 2019,” Trop Med Infect Dis, vol. 7, no. 8, p. 180, Aug. 2022, doi: 10.3390/tropicalmed7080180.
[6] M. Du, W. Jing, M. Liu, and J. Liu, “The Global Trends and Regional Differences in Incidence of Dengue Infection from 1990 to 2019: An Analysis from the Global Burden of Disease Study 2019,” Infect Dis Ther, vol. 10, no. 3, pp. 1625–1643, Sep. 2021, doi: 10.1007/s40121-021-00470-2.
[7] M. Y. Matdoan, “Penerapan Metode K-Nearest Neighbor untuk Mengklasifikasi Penyebaran Kasus Demam Berdarah Dengue (DBD) di Kabupaten Maluku Tenggara,” Square : Journal of Mathematics and Mathematics Education, vol. 4, no. 2, pp. 75–82, Oct. 2022, doi: 10.21580/square.2022.4.2.13056.
[8] S. Shirazi, H. Baziyad, and H. Karimi, “An Application-Based Review of Recent Advances of Data Mining in Healthcare,” Journal of Biostatistics and Epidemiology, Aug. 2020, doi: 10.18502/jbe.v5i4.3864.
[9] J. Mantik, N. Kadek, W. Patrianingsih, K. Setemen, D. Gede, and H. Divayana, “Comparison Analysis Of Naïve Bayes And K-Nearest Neighbor Methods On The Prediction Of Academic Potential In Smk Ti Bali Global Badung,” 2021.
[10] I. G. A. P. Mahendra, I. M. A. Wirawan, and I. G. A. Gunadi, “Enhancement performance of the Naïve Bayes method using AdaBoost for classification of diabetes mellitus dataset type II,” International Journal of Advances in Applied Sciences, vol. 13, no. 3, pp. 733–742, Sep. 2024, doi: 10.11591/ijaas.v13.i3.pp733-742.
[11] G. A. J. Satvika, I. N. Sukajaya, and I. G. A. Gunadi, “Improving k-nearest neighbor performance using permutation feature importance to predict student success in study,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 35, no. 3, pp. 1835–1844, Sep. 2024, doi: 10.11591/ijeecs.v35.i3.pp1835-1844.
[12] Y. Handayani and A. R. Hakim, “Classification of Naive Bayes Algorithm on Dengue Hemorrhagic Fever and Typhoid Fever Based on Hematology Results,” Journal of Applied Intelligent System, vol. 8, no. 1, pp. 94–99, Feb. 2023, doi: 10.33633/jais.v8i1.7547.
[13] A. K. Putri and H. Suparwito, “Uji Algoritma Stacking Ensemble Classifier pada Kemampuan Adaptasi Mahasiswa Baru dalam Pembelajaran Online,” 2023.
[14] R. Jayapermana, A. Aradea, and N. I. Kurniati, “Implementation of Stacking Ensemble Classifier for Multi-class Classification of COVID-19 Vaccines Topics on Twitter,” Scientific Journal of Informatics, vol. 9, no. 1, pp. 8–15, May 2022, doi: 10.15294/sji.v9i1.31648.
[15] E. Togami et al., “Epidemiology of dengue reported in the World Health Organization Western Pacific Region, 2013–2019,” Western Pacific Surveillance and Response Journal, vol. 14, no. 1, pp. 12–27, Jan. 2023, doi: 10.5365/wpsar.2023.14.1.973.
[16] T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and O. Tabona, “A survey on missing data in machine learning,” J Big Data, vol. 8, no. 1, p. 140, Oct. 2021, doi: 10.1186/s40537-021-00516-9.
[17] R. Sena and S. Ben Hamida, “ACTIVE SMOTE for Imbalanced Medical Data Classification,” 2024, pp. 81–97. doi: 10.1007/978-3-031-51664-1_6.
[18] N. A. Azhar, M. S. Mohd Pozi, A. M. Din, and A. Jatowt, “An Investigation of SMOTE Based Methods for Imbalanced Datasets with Data Complexity Analysis (Extended Abstract),” in 2024 IEEE 40th International Conference on Data Engineering (ICDE), IEEE, May 2024, pp. 5735–5736. doi: 10.1109/ICDE60146.2024.00499.
[19] K. S. Y. Pande, D. G. H. Divayana, and G. Indrawan, “Comparative analysis of naïve bayes and knn on prediction of forex price movements for gbp/usd currency at time frame daily,” J Phys Conf Ser, vol. 1810, no. 1, p. 012012, Mar. 2021, doi: 10.1088/1742-6596/1810/1/012012.
[20] S. H. A. Samsudin, N. M. Sabri, N. Isa, and U. F. M. Bahrin, “Sentiment Analysis on Acceptance of New Normal in COVID-19 Pandemic using Naïve Bayes Algorithm,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 9, 2022, doi: 10.14569/IJACSA.2022.0130968.
[21] P. P. Vedanty, M. W. A. Kesiman, I. M. G. Sunarya, and I. G. A. A. D. Indradewi, “Identification of Leaf Diseases of Medicinal Plants Using K-Nearest Neighbor Based on Color, Texture, and Shape Features,” in 2023 10th International Conference on Advanced Informatics: Concept, Theory and Application (ICAICTA), IEEE, Oct. 2023, pp. 1–6. doi: 10.1109/ICAICTA59291.2023.10390034.
[22] A. C. Dewi and G. Fajar Shidik, “Early Detection for Determinants of Risky Behavior in Cervical Cancer Cases through the C4.5 Algorithm in Indonesia,” in 2022 International Seminar on Application for Technology of Information and Communication (iSemantic), IEEE, Sep. 2022, pp. 198–203. doi: 10.1109/iSemantic55962.2022.9920459.
[23] T. A. Pakasi, L. A. Utami, A. Surniandari, H. Rachmi, and D. Nurlela, “Comparison of C4.5 and Naïve Bayes algorithm to determine recommendations of patients receiving the Covid-19 vaccine at Cimanggis Jaya clinic,” 2023, p. 030009. doi: 10.1063/5.0128770.
[24] O. Asmae, S. Saleh, R. Abdelhadi, and B. Bachir, “Enhancing Parkinson’s Disease Diagnosis: A Stacking Ensemble Approach Leveraging Machine Learning Techniques,” in 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, May 2024, pp. 1–7. doi: 10.1109/IRASET60544.2024.10549375.
[25] I. M. G. Sunarya, I Wayan Treman, and Putu Zasya Eka Satya Nugraha, “Classification of Rice Growth Stage on UAV Image Based on Convolutional Neural Network Method,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 12, no. 1, pp. 146–155, May 2023, doi: 10.23887/janapati.v12i1.60959.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 I Kadek Yogi Prayoga, I Made Gede Sunarya, Putu Hendra Suputra

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.