Klasifikasi Jenis Samphyan Banten Upakara Adat Bali Dengan Arsitektur VGG-16 Dan InceptionResnet-V2

Authors

  • Ni Made Rai Arini Permatasari Universitas Pendidikan Ganesha
  • Made Windu Antara Kesiman Universitas Pendidikan Ganesha
  • I Made Gede Sunarya Universitas Pendidikan Ganesha

DOI:

https://doi.org/10.31598/sintechjournal.v8i3.2009

Keywords:

Classification, Inception Resnet V2, Samphyan Banten, Upakara Adat Bali, VGG-16

Abstract

One of the important elements in Balinese traditional ceremonies is Samphyan, a decoration made from janur (young coconut leaves) that has artistic and symbolic value. In addition to being a decoration, Samphyan has a deep spiritual meaning, reflecting prayers, hopes, and respect for the gods and ancestors in Balinese Hindu tradition. With the diversity of forms and functions of Samphyan, a systematic classification is needed to understand its role in the context of traditional ceremonies. The purpose of this study is to build a dataset of samphyan banten images based on the Matetuasan Technique Book and to include a comparison of the classification performance of two Convolutional Neural Network architectures, namely VGG16 and Inception ResNet V2. The research stages consist of data acquisition, preprocessing, classification, and evaluation. The samphyan image data consists of 14 classes. The testing scenario uses a comparison of several hyperparameters, namely batch size (16, 32, and 64), learning rate (0.001, 0.0001, and 0.00001), and epoch (20, 50, and 100). The evaluation results show that the model with the best results, namely the Inception ResNet V2 architecture with a combination of hyperparameters, namely the Adam optimizer, batch size 16, learning rate 0.0001, and epoch 100, produced an accuracy value of 99.94% in training, 100% in validation, and 95.71% in testing. This research produced a deep learning model for classifying Banten samphyan based on the Matetuasan Technique Book, which can enhance understanding and preservation of cultural heritage

References

[1] P. H. Suputra, U. P. Ganesha, and K. Buleleng, “Revealing the Characteristics of Balinese Dance Maestros by Analyzing Silhouette Sequence Patterns Using Bag of Visual Movement with HoG and SIFT Features,” vol. 15, no. 1, pp. 89–104, 2021, doi: 10.5614/itbj.ict.res.appl.2021.15.1.6.

[2] I. Ayu, T. Puspa, N. Putu, S. Dewi, I. Bagus, and S. Saitya, “Komunikasi Simbolik dalam Penggunaan Upakara Yajña pada Ritual Hindu,” vol. 14, no. 1, pp. 20–28, 2019.

[3] I. W. Suharta, “RELEGIUSITAS BANTEN SIAP SAJI DI TENGAH TRANSFORMASI BUDAYA MASYARAKAT BALI,” J. PENJAMINAN MUTU, Lemb. PENJAMINAN MUTU, Univ. HINDU NEGERI, I GUSTI BAGUS SUGRIWA DENPASAR, vol. Volume 8 N, no. Relegiusitas Banten Siap Saji, p. 12, 2022, [Online]. Available: http://ojs.uhnsugriwa.ac.id/index.php/JPM

[4] B. P. dan P. H. P. K. Negara and B. P. Keuangan, “Peraturan Daerah (Perda) Provinsi Bali Nomor 4 Tahun 2014 tentang PELESTARIAN WARISAN BUDAYA BALI,” BPK Negara. [Online]. Available: https://peraturan.bpk.go.id/Details/22242

[5] G. Civic, E. Journal, C. Experience, and C. Knowledge, “Eksistensi Tradisi Dan Budaya Masyarakat Bali,” vol. 2, no. 2, pp. 67–80, 2020.

[6] I. P. Gede et al., “Klasifikasi Judul Berita Bahasa Indonesia Menggunakan Support Vector Machine Dan Seleksi Fitur Mutual Information,” vol. 22, no. 1, pp. 69–79, 2025.

[7] M. A. Vgg-, N. Luh, W. Rahayu, N. Gunantara, and M. Sudarma, “Klasifikasi Jajanan Khas Bali Untuk Preservasi Pengetahuan Kuliner Lokal,” vol. 7, no. 1, pp. 1–14, 2024.

[8] Y. Riyanto, D. Riana, Y. Riyanto, and D. Riana, “Klasifikasi penyakit citra daun anggur menggunakan model CNN-VGG16 Grape leaf image disease classification using CNN-VGG16 model,” vol. 9, no. October, pp. 218–223, 2021, doi: 10.14710/jtsiskom.2021.14013.

[9] G. Sridhar, I. J. Chawathe, S. Kandi, and S. Gogikar, “Brain Tumor Classification Using Inception Resnet V2 Convolutional,” vol. 12, no. 3, pp. 712–720, 2024.

[10] I. Bakti et al., “Arsitektur Convolutional Neural Network InceptionResNet-V2 Untuk Pengelompokan Pneumonia Chest X-Ray,” vol. 1, no. 77, pp. 35–42, 2023.

[11] I. D. Maysanjaya, “Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network ( Classification of Pneumonia Based on Lung X-rays Images using Convolutional Neural Network ),” vol. 9, no. 2, pp. 190–195, 2020.

[12] I. G. Ayu, A. Diatri, N. Wayan, S. Saraswati, and N. W. Wardani, “COVID-19 Chest X-Ray Detection Performance through Variations of Wavelets Basis Function,” vol. 21, no. 1, pp. 31–42, 2021, doi: 10.30812/matrik.v21i1.1089.

[13] S. Program, O. Mathematics, and F. O. Mathematics, “Image Classification Comparison Using Neural Network and Support Vector Machine Algorithm With VGG16 As Feature Extraction Method,” vol. 1, no. 3, pp. 41–52, 2024.

[14] K. Alomar, H. I. Aysel, and X. Cai, “Data Augmentation in Classification and Segmentation: A Survey and New Strategies,” J. Imaging, vol. 9, no. 2, p. 46, 2023, doi: 10.3390/jimaging9020046.

[15] M. E. Prasetyo et al., “Klasifikasi Ragam Kendaraan Menggunakan Metode Convolutional Neural Network ( Cnn ),” vol. 2, no. 2, pp. 142–148, 2023.

[16] I. M. Arya, A. Dwija, I. M. Gede, and I. G. Aris, “JTIM : Jurnal Teknologi Informasi dan Multimedia Perbandingan Algoritma Naive Bayes Berbasis Feature Selection Gain Ratio dengan Naive Bayes Kovensional dalam Prediksi Komplikasi Hipertensi,” vol. 6, no. 1, pp. 37–49, 2024.

[17] Z. Jiang, Y. Liu, Z. Shao, and K. Huang, “applied sciences An Improved VGG16 Model for Pneumonia Image Classification,” 2021.

[18] A. S. Mashuri and A. Sunyoto, “Klasifikasi Penyakit Pada Daun Cabai Menggunakan Arsitektur VGG16,” vol. 6, no. 2, pp. 296–304, 2024, doi: 10.33650/jeecom.v4i2.

[19] A. Eko, B. Yoni, Y. Munarko, H. Adi, and Z. Ibrahim, “Convolutional Neural Network featuring VGG-16 Model for Glioma Classification,” vol. 6, no. September, pp. 660–666, 2022.

[20] I. P. A. Suputra, I. G. A. Gunadi, and I. M. G. Sunarya, “Hyperparameter Optimization with MobileNet Architecture and VGG Architecture for Urban Traffic Density Classification Using Bali Camera Image Data,” vol. 9, no. 3, pp. 1132–1145, 2025.

[21] M. Ichwan and A. Olga Zerlinda, “MIND (Multimedia Artificial Intelligent Networking Database Implementasi Arsitektur InceptionResNet-v2 dan Squared Hinge Loss (Studi Kasus Klasifikasi Pose Yoga),” J. MIND J. | ISSN, vol. 7, no. 2, pp. 124–138, 2022.

[22] I. M. G. Sunarya, I. W. Treman, P. Zasya, and E. Satya, “Classification of Rice Growth Stage on UAV Image Based on Convolutional Neural Network Method Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 147,” vol. 12, no. 1, pp. 146–155, 2023.

[23] N. Wayan, Y. Wiani, I. M. A. Wirawan, K. Yota, and E. Aryanto, “Klasifikasi Gerakan Tangan Berbasis Sinyal sEMG,” vol. 11, no. 1, pp. 121–128, 2025.

[24] D. A. N. A. Genetika, “Sistem Rekomendasi Perjalanan Wisata Berbasis Expert System,” vol. 5, no. 1, pp. 47–54, 2022

Downloads

Published

2025-12-31

How to Cite

Ni Made Rai Arini Permatasari, Made Windu Antara Kesiman, & I Made Gede Sunarya. (2025). Klasifikasi Jenis Samphyan Banten Upakara Adat Bali Dengan Arsitektur VGG-16 Dan InceptionResnet-V2. SINTECH (Science and Information Technology) Journal, 8(3), 220–230. https://doi.org/10.31598/sintechjournal.v8i3.2009

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.